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ABSTRACT

Sandgren, Eric. Ph.D., Purdue University, December 1977.
The Utility of Nonlinear Programming Algorithms. Major
Professor: K. M. Ragsdell.

A comprehensive comparative study of nonlinear pro-
gramming algorithms as applied to engineering design is
presented. Linear approximation methods, interior penalty
function methods and exterior penalty function methods
were tested on a set of thirty problems and were rated on
their ability to solve problems within a reasonable amount
of computational time. The effect of the problem parameters
on the solution time for the various classifications of .
algorithms was studied. The variable parameters included
the number of design variables, the number of inequality
constraints, the number of equality constraints and the
degree of nonlinearity of the objective function and
constraints. Also the combination of penalty function
algorithms and linear approximation algorithms was investi-

gated.



CHAPTER 1 INTRODUCTION

1.1 Introduction

The field of design engineering has been in a state
of rapid evolution over the past two decades. This evolu-
tion has been greatly influenced by the introduction of
computer aided design. Design procedures previously carried
out by hand are now being programmed for a computational
solution. This reliance on the computer originated at the
dawn of the space age and has continued to an ever increas-
ing degree.

Previously the goal of an engineering designer was
to devise an adequate component. The fact that the pro-
posed design was not very compact or slightly overdesigned
and overweight was far overshadowed by the adequate per-
formance of the component. However, as the space.age
progressed, components had to be designed which were strong,
compact, extremely light in weight and above all dependable.
These often competing objectives greatly increased the
complexity of engineering design and introduced the concept
of the "best" or optimal design to everyday language.
Now the designer had to select from a wide range of feasible
designs, the one that met the design criteria in the best

fashion. This is where the computer became extremely



helpful, for the designer was now required to attack prob-
lems which were of such a complex nature that once the de-
sign variables were selected it was not at all obvious as
to how to proceed to meet the desired objectives. This

is why design procedures formerly carried out by hand were
converted for a computational solution. This conversion
enabled the linking of the engineer with his knowledge of
the problem and the computer which could quickly analy:ze

a proposed design. With the current energy crisis and the
ever increasing cost of material and labor, this linking
of designer and computer to reach a better solution is
rapidly becoming a way of life in mechanical engineering.
A computational procedure to aid the designer in evaluating
a series of choices of the design variables so as to best
achieve the objective without violating any design con-
straints is then very desirable. A powerful computational
tool which provides this aid is the field of nonlinear
programming.

Based upon his knowledge of the problem the design
engineer is able to define a set of design variables, a set of
constraints which define the feasible region, and an overall
objective of the proposed design. The mathematical formu-

lation of this problem is to:

Minimize £(X); R = [X4%,,Xg0e00 %] eRN (1.1)

subject to _
gkm)i 0; k=1,2,3, ..., K (1.2)



and

h, =0; ¢=1,2,3,...,L (1.3)

In this formulation X represents a column véctor containing
N design variables, f(X) represents the objective function
which gives an indication of the gquality of a given design,
and g(X) and h(X) represent the sets of inequality and
equality constraints respectively which serve to limit the
design space to some feasible region.

This general formulation has been applied to a wide
range of problems over the past fifteen years, encompassing
the fields of engineering, economics and the physical
sciences. If the objective function and constraints are
linear, the problem falls into the classification of linear
programming, a highly developed branch of mathematical
programming. Solution of a linear programming problem is
possible even when the problem involves several hundred
variables and constraints. Unfortunately, the objective
function and constraints are generally nonlinear in nature
for the majority of problems a mechanical engineer faces.
This type of problem where either the objective function,
the constraints or both may be nonlinear falls into the
field of nonlinear mathematical programming and although
thg subject of much current research, there does not
presently exist a general method to solve the nonlinear
programming problem. So while the simplex algorithm

can be successfully applied to practically any linear



programming problem, the engineering designer must choose
between a large number of available algorithms to attempt’
to solve a nonlinear programming problem with no guarantee
that any selected method can solve the problem. Since each
available algorithm developed to handle the nonlinear
programming problem has a limited capacity to solve any
given problem it becomes necessary to investigate the
ability of each of them to handle the engineering design
problem.

Several attempts at conducting comparative studies
of nonlinear programming algorithms have been made to
date but none of these studies have produced any conclusive
results., In fact many of the results of these studies are
contradictory and the designer still has no real guide
in the selection of a nonlinear programming algorithm.

It is the major goal of this work to provide this information.

1.2 A Brief Review of Constrained

Nonlinear Programming Techniques

The vast majority of the algorithms available today
which handle the constrained nonlinear programming problem
as represented by equations (1.1) through (1.3) are of
two basic types. The first approach known as the penalty
function or transformation approach seeks to transform
the constrained problem to a sequence of unconstrained

problems. This sequence of unconstrained problems may



then be solved by any of a large number of unconstrained
search techniques. The second approach known as the
linearization type approach handles the problem directly

as a constrained problem by the linearization of the objec-
tive function and/or the constraints. Each of these basic

methods will now be discussed in more detail.

1.2.1 Penalty Function Methods
The penalty type approach reformulates the constrained

nonlinear programming problem to the following form:
Minimize P(X,R) =£(X) +a[R,g(X),h(X)] {(1.4)

Here f (X) represents the original objective function

and Q represents the penalty term which is a function of
the penalty parameters R, the inequality constraints and
the eguality constraints. The exact way in which the pen-
alty term is formed defines the particular method. The
basic idea behind the penalty function methods is to
penalize any design which violates one or more of the
constraints. However, it must be noted that this is
accomplished by drastically distorting the contours of
the original objective function which can make the un-
constrained search very difficult. To circumvent this
difficulty the original constrained problem is replaced
by a sequence of unconstrained problems.- At the initial

stage the penalty term is designed so that the original



function contours are not altered drastically. Then at
each successive unconstrained problem the contours are
altered to a greater extent making each unconstrained
nminimization more difficult. However, each successive
‘unconstrained search is started from the solution of the
preceding stage and the distance traveled from one stage
to the next decreases as the number of stages increases.
Ideally the increase in difficulty from stage to stage is
offset by the smaller distance traveled so that each
stage requires approximately the same computational effort.
Unfortunately, this is not always the case.

The penalty function approach may be subdivided into
two classes. The interior penalty function acts as a
barrier to keep the successive points from leaving the
feasible region with respect to the inequality constraints.

Typical examples of an interior type penalty function would

be
— K —
P(X,R} = £(x) ~ R ] 1n{g, (x)} (1.5)
k=1
or
— K 1
P(x,R) = £(X) + R } — (1.6)
k=1 gk(x)

The penalty function given by equation (1.5) has been
implemented in one of the more widely used penalty function
algorithms SUMT [1], and the penalty function given by

equation (1.6), developed by Carroll [2], has been used



in many algorithms including an earlier version of SUMT,
Starting from a feasible point for a given value of R none of
the constraints may be theoretically violated throughout the
solution procedure. This is because in order to pass from
the feasible region to the infeasible region one or more of
the constraints would have to change from a positive value to
a negative value. As any gk(ﬁ) approaches zero, however, the
penalty term would add penalty value which approaches infin-
ity thus creating a supposedly insurmountable barrier. So by
starting with a given value of R (say between 1 and 10) and
successively performing unconstrained searches where at the
end of each unconstrained minimization R is divided by a fac-
tor (say 10), the successive stages should approach some con-
strained solution. Under certain conditions including a con-
tinuous objective function and constraints and the existence
of a nonempty compact set the successive penalty stages can
be shown to converge to the minimum of the constrained prob-
lem [3]. Realistically, however, the penalty type approach
will handle a large number of problems which do not satisfy
all of the required conditions for convergence to the con-
strained minimum.

Since equality constraints cannot continuocusly be
satisfied by an interior penalty type method, this kind
of constraint must be handled by an exterior penalty term.
Thus an interior type penalty function which includes

equality constraints is actually a mixed interior-exterior



penalty function. The added term is usually a function of
the square of the equality constraints. With this additional

term equations (1.5) and (1.6) become:

K L
P(X,R) = £(X) - R ] Inig ()} + 1/R J h3(X) (1.7)
and
_ _ K 1 L ,
P(x,R) = £(X) + R ) — + 1/R ] h'%(x) (1.8)
k=1 gk(x) =1

As the value of R is continuocusly decreased as re-

quired for the convergence of the interior portion

of the penalty function the factor 1/R increases. This
allows the equality constraints to be violated at the ini-
tial stages but as the penalty parameter R is reduced

the penalty increases and the successive unconstrained
solutions will approach feasibility with respéct to the
equality constraints.

The exterior penalty approach may also be used to
handle the inequality constraints. This type of penalty
function allows the solution to initially leave the feasible
region with respect to the inequality constraints as well
as the equality constraints. A typical example of an
exterior penalty function would be:

P(x,R) = £(x) + R ] <g (X)>" + R ] (h{(X)} (1.9)
k=1 =1



The bracket operator used in this penalty function is used
in the first summation so that only the values of the

violated constraints are included. fThat is

<gk(§)> =0 |if gk(f) 20 (1.10a)
and

<g (X}> = g, (X) if g (X) < 0 (1.10b)

For this case only a small penalty is added for constraint
violations when R is relatively low and an increasingly large
penalty is added as R increases. Thus by starting at a
relatively low value of R (say 10) and successivély per—
forming unconstrained minimizations each time multiplying

R by a factor (say 10) the successive stages can be seen to
approach feasibility. Again convergence to the constrained
optimum can be guaranteed under certain conditions.

In summary then, a penalty function method seeks to
replace the original constrained p;oblem by a series of
unconstrained problems. The exact form of the penalty
term is widely varied and each form produces a different
method with different rates of convergence to the cﬁnstrained
minimum. The unconstrained searches may be performed by
any of a number of methods. Some of the more frequently
used methods are Davidon-Fletcher-Powell {4], Fletcher-
Reeves [5], Powell's method [6], Hooke-Jeeves [7] and
Broyden-Fletcher-Shanno [8]. The major disadvantage of

this approach is that a number of unconstrained minimizations
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are required with each unconstrained search involving an
increasingly distorted version of the original objective.
function. One method which seeks to reduce this distortion
is Schuldt's Biased Penalty Method [9]. A more detailed
discussion of penalty functions and the unconstrained
methods incorporated with them may be found in references

fl0-12].

1.2.2 Linearization Methods

The linearization methods cover a rather broad range of
algorithms. The first and most basic of the algorithms
is that of Griffith and Stewart [13]. In this method
the objective function and all constraints are expanded
about a point X in a Taylor Series expansion with all of
the nonlinear terms dropped. The resulting linear program-
ming problem may then be solved by the application of the
Revised Simplex Method [14]. The solution to this linear
programming problem produces a new point X which will lie
at the intersection of two or more of the linearized con-
straints. However, if any of the constraints are very
nonlinear in nature the solution to the linear programming
problem may be a very poor estimate of the constrained
optimum so limits on the maximum change in each design
variable are imposed at each stage. The basic advantage of
this method is that it makes use of the well developed

and readily available simplex method for the successive
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linear programs. The disadvantage is generally slow con-
vergence for problems which are even moderately nonlinear.

A more recent development in the field of linearization
methods is the reduced gradient concept which was developed
independently by Wolfe [15] and by Wilde and Beightler [16].
For this method all inequality constraints are converted
to equality constraints through the addition of slack
variables. The variables, consisting of the original design
variables plus the slack variables, are then partitioned into
two sets. The first set z consists of the decision variables
which are completely independent and the second set y con-
sists of the state variables which are continuously adjusted
to satisfy the constraints. The reduced gradient may then
be defined as the rate of change of the objective function
with respect to small changes in the decision variables
with the state variables adjusted to maintain feasibility.
The concept may be thought of as a projection of the
original N variables into an N-L dimensional feasible space
of the design variables.

The calculation of the reduced gradient is accomplished
by linearizing the objective function and the constraints

about x. This gives

_ of 3 f
df {x) = oz dz + 3y dy (1.11)
and
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_ oh oh_
dhm(X) =—a"'{dz +"'é?dy=0; m=1,2,3, -oo'L'

L+1, ...,L+K (1.12)

Equation (1.12) may then be solved to find a linear approx-
imation of the required change in the state variables in

order to maintain feasibility.

3h 4, (1.13)

Now combining equations (1.11) and (1.13) results in a

linear approximation to the reduced gradient.

dz = 5z " 5y oy 3z (1.14)

As the elements of the reduced gradient go to zero no change
can be made in the decision variables to improve the objec-
tive function without leaving the feasible region.

Currently the generation of search directions has been
accomplished throhgh implementation of the Fletcher-Reeves,
Davidon-Fletcher-Powell, or Broyden-Fletcher-Shanno uncon-
strained minimization techniques. The choice of search
technigue and the method for the selection and subsequent
changing of the state and decision variables when a bound is
encountered define each individual reduced gradient
algorithm. Current published literature [17,18] indicates
that the generalized reduced gradient is a robust and
efficient method of solving the constrained nonlinear

programming problem.
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There are several algorithms available which address
subsets of the general nonlinear programming problem. Among
these algorithms are the method of feasible directions
developed by Zoutendijk [19], separable programming and
Box's method [20]. These methods will not be considered
since they cannot handle the general nonlinear programming

problem as represented by equations 1.1 through 1.3,

1.3 Literature Survey

Many of the early comparative studies of nonlinear
programming algorithms involved unconstrained methods. Since
the unconstrained problem is a subset of the general con-
strained problem and since many of the constrained algorithms
depend upon an unconstrained technique any comparative
information on unconstrained algorithms must be considered
to be useful. Also different techniques used in conducting
these studies have been used in the studies comparing
constrained algorithms making their inclusion important
when tracing the history of comparative studies for nonlinear
programming codes. One of the first such studies was con-
ducted by Brooks [21] in 1959. Brooks compared the Method
of Steepest Ascent [22], univariate search, factoral and
random methods on a series of four, two variable problems.
Each method was started from various points on each problem

and the methods were compared on the average improvement
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in the objective function after sixteen 5nd thirty function
evaluations. The results of the study indicated that the
Steepest Ascent Method performed best followed by univariate
search. The results are interesting only in the fact that
even at this early stage gradient and pattern search type
methods were demonstrated to be superior to the random based
methods for this limited set of two dimensional problems.
This study was followed by a group of comparative studies
which appeared in the literature in the mid 60's. Among
these were studies by Fletcher [23] in 1965, Leon [24] and
Box [25) in 1966, and Kowalik and Osborne [26] in 1968.
These studies involved the comparison of from three to
eight algorithms including gradient and nongradient tech-
nigques on a set of five to eight test problems. The test
problems were generally unconstrained and the majority of
test problems were limited to less than four independent
design variables. Box did include problems which involved
the solution of simultaneous nonlinear equations which con-
tained up to twenty variables. Box also included results
on several constrained problems but the emphasis was on
transformations to eliminate several of the éonstraints.
The results of the Kowalik and Osborne study also included
two constrained problems. The criteria for evaluation was
usually based upon the number of function evaluations
although Leon did include the computational time for each

solution in his results. However some of the results



15

included the number of function calls which would be re-
quired to calculate gradients for the gradient based
methods and other results did not, even though analytical
gradients were supplied. Also the uniformity of accuracy
at the solution was not consistent in these studies although
Box did make an attempt to stop the methods at approximately
the same accuracy. The general conéensus from these studies
was that the variable metric algorithms performed somewhat
batter than the others, however none of these results could
be regarded as being conclusive considering the small
sampling of problems and methods. These studies were
followed by that of Colville [27] in 1968 which was by
far the most comprehensive study attempted up te this time.
Colville sent eight constrained problems ranging from
three to sixteen independent variables to the developers
of thirty methods. Data was collected which included the
solution, the computational time required to achieve the
solution, and the number of function and constraint evalua-
tions. The methods were divided into several broad categories
including direct search methods, small step gradient methods,
large step gradient methods, second derivative methods and
miscellaneous methods. The results were based upon the
number of problems solved and the mean value and standard
deviation of the solution times over all of the problems.
In order to compare the times of the different machines

used in the study a standard timing routine involving
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several matrix inversions was sent to each participant and
all times reported by each participant were divided by |

the reported time to run the standard timing routine. While
the results of the Colville Study were inconclusive, several
interesting observations were made. First of all it was
found that the performance of a nonlinear programming al-
gorithm was greatly affected by how efficiently it was
implemented. This was demonstrated by several versions of
the same type of algorithm producing vastly different re-
sults. Colville also pointed out that the number of func-
tion evaluations, the primary basis of comparison for earlier
studies, was not a good indication of performance. The time
required to generate successive points for a given algorithm
was found to be far more significant than the time spent
evaluating the objective function and constraints for many of
the problems tested. Colville stated that the large step
gradient methods and the second derivative methods were faster
and more robust than the other methods. Unfortunately, most
of these methods required analytically computed gradients
while other codes did not. Problems encountered in this study
include comparison of solutions of different accuracies, the
use of the standard timing routine which has since been shown
to be invalid for accurate comparison [10] and the use of
analytically calculated gradients with some methods and
numerically calculated gradients with others. Also by

“having the developer of each algorithm actually solve each
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problem the time reported may be significantly lower than
that expected by an average user. However, even with

these inherent difficulties the Colville study in many

ways pointed out how a comparative study should be conducted
in order to produce meaningful comparative results.

In 1970 Abadie and Guigou [17] reranked Colville's
test data including the results for their updated version
of the generalized reduced gradient code tested in the
Colville study. The results show the new version to be
significantly faster than the old version which already
had the best weighted average score of the algorithms
tested in the Colville study. Again, however, these results
were calculated using the questionable standard timing
routine, but the apparent superiority of the generalized
reduced gradient technique was demonstrated. Stocker [28]
conducted a comparative study including many of the algor-
ithms tested in the Colville study and several new methods
in 1969. Complete results from this study are not generally
available but some results are presented in [10] along with
additional data and recommendations. General performance
is indicated for seven algorithms on twenty problems but
no specific comparative criteria was used. Again some of
the codes were supplied with analytic gradients and others
used numerically calculated gradients. Other small scale
studies were also conducted during this time period. Among

these studies were those conducted by Pearson [22] in 1969
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and Huang and Levy [30] and Murtagh and Sargent [31] in 1970.
Pearson compared the results of seven algorithms on two
unconstrained and three constrained problems. The con-
strained problems were solved using a logarithmic penalty
function. The studies conducted by Huang and Levy and
Murtagh and Sargent involved the comparison of several
quadratically convergent algorithms on very limited sets
of test problems. In all of these studies the main criteria
for evaluation was the number of function evaluations and no
specific comparative results were presented.

Aﬁplications of several nonlinear programming methods
to a specific type of problem are common throughout this
time period. Applications to least square problems were
considered by Bard [32] and Jones [33] in 1970 and to
optimal control problems with terminal state constraints
incorporated as a penalty term by Pierson and Rajtora [34]
in 1970. A more recent comparison of methods for the solution
of structural problems was conducted by DeSilva [35] in 1973.
These studies are typical of application type comparisons
in that they consider a very limited number of algorithms and
test problems. For this reason the results do not provide
much comparative information. 1In 1971 at the Conference
on Numerical Methods for Nonlinear Optimization held at the
University of Dundee in Scotland several comparative papers
were presented. Sargent and Sebastian [36] and Himmelblau

[37] gave results for unconstrained algorithms. The work
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of Sargent and Sebastian was directed more at testing the
effect of changing the various parameters within an algorithm
rather than the actual comparison of different methods, but
the significant effect of these parameters on the performance
of the tested algorithms pointed out a variability not
considered in the past comparative studies. Himmelblau
presented results for fifteen methods on fifteen relatively
small scale test problems. Solution time was used as the
criteria for evaluation and a single termination criteria
was applied to all algorithms in an attempt to stop all
algorithms at the same approximate level of accuracy.
Analytically calculated gradients were supplied to ‘all
algorithms requiring gradient information. The results

of this study again point out the performance of the variable
metric algorithms of Davidon-Fletcher-Powell and Broyden-
Fletcher~Shanno along with Fletcher-Reeves to be better

than the performance of the other algorithms tested. Other
papers from this conference included a comparison of several
random search procedures by Schrack and Borowski [38] and

a comparison of several penalty function type algorithms

by Biggs [39]. Schrack and Borowski did not recommend that
random search techniques be used in place of gradient search
methods but applications such as locating starting points
for other algorithms and for searching about the final point
generated by another method were suggested. The study by

Biggs involved the comparison of a standard interior and
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exterior penalty function with two algorithms which replace
the successive unconstrained minimizations with a sequence of
quadratic programming problems. The results are based on the
solution time and on the number of function evaluations re-
quired on a series of nine test problems, three of which were
used by Colville. Results indicate that the methods involv-
ing a sequence of quadratic programming problems can be ef-
fective. However comparison with only one interior and one
exterior penalty function method on a set of small scale prob-
lems is in no way conclusive.

A major study directed at engineering type problems was
conducted by Eason and Fenton [40] in 1972. 1In this study
twenty nonlinear programming algorithms were tested on thir-
teen problems. All of the algorithms were collected and run
at the University of Toronto which eliminated the need for
the standard timing routine. Advances over previous studies
were the use of several solution points to establish an error-
time curve which allowed a comparison of all methods at ap-
proximately the same accuracy aﬁd the use of numerically eval~
uated gradients for all gradient based algorithms. Several
different ranking schemes were employed including those pro-
posed by Colville and Abadie and Guigou, but again conclusive
results were not forthcoming. In this study the direct search
methods performed significantly better than any of the gradi-~
ent based methods, a fact which contradicts the results of

most of the previous studies. The top three algorithms were

two methods which relied on a Hooke-Jeeves pattern search and
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a method using the Geometric Simplex method of direct search.
Eason states that this result may have been due to the small
number of independent variables present in all of the test
problems and the fact that no analytic gradient information
was supplied. Both of these observations are probably valid
to some degree, but another point is that only standard param-
eters were used for all of the codes. The direct search meth-
ods generally need only initial and final estimates of the
step size, while the gradient methods generally require sever-
al input parameters most of which are relatively problem de-
pendent. While recommended values for these parameters are
supplied in the users manual for almost every algorithm they
are intended only as general starting values and in many cases
a procedure for changing these standard parameters is supplied
in case trouble is encountered in the solution procedure. It
should also be pointed out that the gradient methods which
performed the best in the Colville study, the generalized re-
duced gradient algorithms, were not included in the study by
Eason, which may well be the major reason for the direct
search methods relatively good performance. Furthermore the
criteria for a method to have solved a test problem was some-
times related to the magnitude of the objective function at
termination compared to that of the optimal objective func-
tion, and sometimes to the distance of the vector of design
variables at termination to the optimal design variables. 1In
several cases the required accuracy of solution of the design

variables was specified so that the objective function was
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required to be accuarte to the eighth or ninth significant
figure where any gradients would be so small that most
gradient methods would stop before reaching this point.
Whether any or all of these factors influenced the results
of this study remains a matter of conjecture, but the point
remains that the results contradicts almost all of the
previously established results.

After Eason's study was completed several other small
scale studies have been conducted. A slightly different
approach toward comparison was attempted by Larichev and
Gorvits [41] in 1974 where both an analytical study and
experimental study were conducted on several algorithms on
unconstrained nonlinear valley functions. This approach
is an interesting one, however, it is not possible to apply
this type of analysis to the general constrained nonlinear
programming problem since no analytical expressions may
be developed for the convergence of an algorithm for the
general problem. The development of new algorithms has also
resulted in several comparisons of methods. Three such
studies were published by Pappas and Moradi [42] in 1975.and
Schuldt et. al. [43]) and Gabriele and Ragsdell [18] in 1977.
Unfortunately, these comparisons rated the newly developed
algorithms with the results of the study by Eason through
the use of the questionable standard timing routine used
by Colville. However results indicate the new techniques

including a direct search method by Pappas and Moradi, a new
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penalty function method by Schuldt, and above all a general-
ized reduced gradient algorithm by Gabriele and Ragsdell per-
form very well. Also the results from Gabriele and Ragsdell
and from Schuldt indicate that the use of numerically calcu-
lated gradients does not seriously effect the performance of
gradient based methods.,

The emphasis in the review of the past comparative stud-
ies has been placed on the experimental studies. Several
studies of theoretical convergence have been conducted such as
those by Wolfe [44] and Luenberger [45]. The theoretical ¢con-
vergence characteristics of the various algorithms are very
important but they have several serious drawbacks for general
comparison. First of all most theoretical convergence formu-
lations are based on the improvement in the design vector from
stage to stage and are in no way related to the time required
for each stage. Also for many algorithms a "stage" may not be
easily defined and the manner in which a stage is defined will
in many cases significantly alter the apparent rate of con-
vergence. Several algorithms such as the Hooke-Jeeves pattern
search method would be difficult to classify as to the tﬁeo-
retical rate of convergence since no proof of convergence ex-
ists for such a method. Another problem is that even the
theoretical convergence rates are problem dependent and may
change drastically during the solution process. Also the con-
vergence rate for a method such as the generalized reduced
gradient algorithm can be altered on a given problem simply

by changing the initial selection of basic variables. These
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inconsistencies make the theoretical approach very difficult
to apply which is the basic reason most of the past studies

have been experimental in nature.

1.4 Research Objectives

The shear number of comparative studies conducted to date
of which those mentioned in the previous section is only at
best a partial list may well be the best indicator of how much
this type of information is needed. The fact remains, how-
ever, that through all of these attempts at obtaining this
comparative information, not one has actually succeeded in
providing consistant and conclusive comparative information.
In truth the results presented to date give only a partial
and often contradictory idea of the relative effectiveness of
the algorithms available to date. Different rating criteria,
varying termination criteria, inaccurate time comparisons be-
tween different machines, the small dimensionality of most
test problems, the inconsistent use of analytic and numer-
ically calculated gradients and the somewhat haphazard'selec-
tion of algorithms all tend to cloud the picture rather than
to bring it into focus. But even though every previous com-
parative study would seem to have several serious flaws, the
net result is an indication of what must be done in order to
achieve some valid comparative data. It is the major goal of
this research to conduct a comparative study of nonlinear pro-
gramming algorithms with application to engineering design in

such a way as to produce some useful comparative information.
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The research will be divided into four phases. These phases
are the selection of algorithms, the selection of realistic
design problems, experimentation and compilation of results,
and to synthesize the results into some preliminary algorithm
development. The study will be carefully and consistently
conducted to avoid as many of the pitfalls of the past

studies as is possible,
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CHAPTER 2 PROCEDURE FOR GENERATING COMPARATIVE DATA

2.1 Introduction

It can be seen from the results of past studies that it
is very important to set down a carefully designed procedure
for generating and evaluating the comparative data. Before
any data may be generated, however, several initial decisions
must be made. These decisions include which algorithms to
include, what test problems should be used and in general how
the comparative data will be collected. Each of these de-
cisions is extremely important for if any phase of the com-
parative study is not given adequate attention, the value of
the study will be greatly reduced. For this reason each of

these initial decisions will be considered in some detail.

2.2 Selection of Algorithms

In the selection of algorithms the main objective is to
include as many as possible but to still keep the study to
manageable proportions. To meet this objective, algorithms
were solicited throughout the world and a wide selection of
algorithms was obtained from both industry and the academic
community. It should be noted that some of the codes which
were initially considered were not included due to the fact
that not everyone who was contacted agreed to participate.

The overall response, however, was supportive and in all
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thirty-five algorithms were collected. A brief listing of

the algorithms, their general classification and the uncon-
strained optimization technique used if any are included in
Table 2.1. A more complete description of each of the codes
is available in Appendix A. To simplify the terminology the
numbering of the algorithms in Table 2.1 will be used through-
out the study. For example, the code APPROX will be referred
to as code number four. It can easily be seen from Table 2.1
that many of the algorithms included in the study are of the
same basic class and even use the same unconstrained optimiza-
tion techniques. This duplication was intentional and was
meant to insure a fair testing of each class and type of meth-
od since as Colville pointed out two algorithms which are
theoretically the same may produce drastically different re-
sults. Of course there are many additional algorithms which
could have been included in the study and the fact that they
were not included is in no way a reflection on the value of
the code. The codes included are meant to be a representative

sample of the codes currently available.

2.3 Selection of Test Problems

Just as it is important to obtain a wide variety of al-
gorithms, it is equally important to select a wide range of
test problems. It is in this aspect that essentially all of
the past comparative studies have been lacking. The problems
to be selected should include a wide range in the number of

variables and the number of donstraints and should include
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. Table 2.1 Algorithms Included in the Camparative Study .
Algorithm Class Unconstrained Search

(1) BIAS EXTERIOR PENALTY VARTABLE METRIC (DFP)
(2) SEEK1 INTERIOR PENALTY PATTERN-RANDOM
(3) SEEK3 INTERTOR PENALTY PATTERN ({HOOKE-JEEVES)
(4) APPROX LINEAR APPROXIMATION |NONE
(5) STMPIX INTERIOR PENALTY PATTERN (SIMPLEX)
(6) DAVID INTERIOR PENALTY VARIABLE METRIC (DFP)
(7) MEMGRD INTERTOR PENALTY MEMORY GRADIENT
(8) GRGDFP REDUCED GRADIENT VARTABLE METRIC (DFP)
{9) RaLP LINEAR APPROXIMATION |NONE
(10) GRG REDUCED GRADIENT VARTARLE METRIC (BFS)
(11) opT REDUCED GPRADIENT CONJUGATE GRADIENT (F-R)
(12) GREG REDUCED GRADIENT CONJUGATE GRADIENT (F-R)

" {13) COMPUTE II (0)| EXTERICR PENALTY PATTERN (HOOKE-JEEVES)
(14) COMPUTE II (1)|EXTERTOR PENALTY CONJUGATE GRADIENT (F-R)
(15) COMPUTE IT (2) | EXTERIOR PENALTY VARTARIE METRIC (DFP)
(16) COMPUTE II (3)| EXTERIOR PENALTY PATTERN (SIMPLEX~HOOKE-JEEVES)
(17) MAYNE (1) EXTERIOR PENALTY PATTERN (UNIVARIATE SEARCH)
(18) MAYNE (2) EXTERTIOR PENALTY STEEPEST DESCENT
(19) MAYNE (3) EXTERIOR PENALTY CONJUGATE DIRECTIONS (POWELL)
(20) MAYNE (4) EXTERIOR PENALTY CONJUGATE GRADIENT (F-R)

. (21) MAYNE (5) EXTERIOR PENALTY VARIABLE METRIC (DFP)

(22) MAYNE (6) EXTERIOR PENALTY PATTERN (HOOKE~JEEVES)
(23) MAYNE (7) INTERIOR PENAILTY PATTERN (UNIVARIATE SEARCH)
(24) MAYNE (8) INTERIOR PENALTY STEEPEST DESCENT
(25) MAYNE (9) INTERTOR PENALTY CONJUGATE DIRECTIONS (POWELL)
(26) MAYNE (10) INTERIOR PENALTY CONJUGATE GRADIENT (F-R)
(27) MAYNE (11) INTERIOR PENALTY VARIABLE METRIC (DFP)
(28) SUMT IV (1) INTERIOR PENALTY SECOND ORDER (NEWTON-RAPHSON)
(29) SUMT IV (2) INTERIOR PENALTY SECOND ORDER (NEWTON-RAPHSON)
(30) SUMT IV (3) INTERIOR PENALTY STEEPEST DESCENT
{31) SUMT IV (4) INTERIOR PENALTY VARIABLE METRIC (DFP)
(32) MINIFUN (0) MIXED PENALTY CONJUGATE DIRECTIONS (POWELL)
(33) MINIFUN (1) MIXED PENALTY VARTABLE METRIC (BFS)
(34) MINIFUN (2) MIXED PENALTY SECOND ORDER (NEWTON-RAPHSON)
(35) CQMET EXTERIOR

VARIABLE METRIC (BFS)
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problems with equality as well as inequality constraints.
The problems should also include a wide range in the degree
of nonlinearity of the objective function and the constraints.
These were the basic considerations in selecting the test
problems for the study. Several problems were selected from
past studies to give the study a sound historical foundation.
These problems were included basically as initial test prob-
lems to gain familiarity with each of the algorithms, although
the set of problems studied by DPembo [46] in a comparison of
geometric programming algorithms included some interesting
engineering applications. Other problems were selected from
a wide range of additional engineering applications and a
total of thirty test problems will be considered, seven of
which have not appeared in any previous comparative study. A
brief listing of the problems and the number of variables and
constraints is contained in Table 2.2. A detailed description
including complete starting and solution data along with a
fortran listing of each problem is included in Appendix B.
Thirty test problems may seem like a rather limited test set
but to simply run each of the thirty-five algorithms once on
the thirty test problems involves over one thousand individual
runs. The computational cost and simply the time involved in
collecting data on a larger test set is infeasible.

The problems range from two to forty-eight design

variables and from four to seventy-five constraints including
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Table 2.2 Problems Included in the Comparative Study.
Problem N K L Variable Bounds
(1) EASON #1 5 10 0 5
(2) EASON #2 3 2 0 6
(3) EASON #3 5 6 0 10
(4) EASON #4 4 0 0 8
(5) EASON #5 2 0 0 4
(6) EASON #6 7 0 4 12
{7) EASON #7 2 1 0 4
(8) EASON #8 3 2 0 6
(9) EASON #9 3 9 0 4
(10) EASON #10 2 0 0 4
(11) EASON #11 2 2 0 4
(12) EASON #12 4 0 0 8
(13) EASON #13 5 4 0 3
(14) COLVILLE #2 15 5 0 15
{(15) COLVILLE #7 16 0 8 32
{(l16) COLVILLE #8 3 14 0 6
(17) DEMBO #1 12 3 0 24
(18) DEMBO #3 7 14 0 14
(19) DEMBO #4 8 4 0 16
(20) DEMBO #5 8 6 0 16
(21) DEMBO #6 13 13 0 26
(22) DEMBO #7 16 19 0 32
(23) DEMBO #8 7 4 0 14
(24) WELDED BEAM 4 5 0 3
{25) COUPLER CURVE 6 4 0 6
(26) WHIRLPOOL 3 0 1 6
(27) SNG 48 1 2 72
(28) FLYWHEEL 5 3 0 10
(29) AUTOMATIC LATHE 10 14 1 20
(30) WASTE WATER 19 1 11 38

=
]

number of design variables.
number of inequality constraints.

number of equality constraints.
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variable bounds. Larger problems were considered but were
eliminated due to the excessive computational cost of each
run. Also consideration had to be given to the availability
of solution information to allow for comparison, and prob-
lems which contained many local optima were excluded since
it is very difficult to compare results at different
solutions.

It should be noted that this problem set is much larger
than that of any previous comparative study and the problems
selected cover a wide range of applications including
current industrial applications. The results on this
problem set should then be representative of the type of

problems the engineering designer might face.

2.4 Collection of Data

Even after the algorithms and test problems had been
selected, considerable work and several critical decisions
had to be made before the accumulation of test data could
commence. A major amount of time and effort was required
to convert all of the test codes to run on the Purdue
University CDC 6500 Computing System. The basic change
involved conversion of all dbuble precision arithmetic to
single precision. This was done since the number of sigﬁifi-
cant digits available on the CDC 6500 using single precision
arithmetic is greater than the number of significant digits

available on many other machines using double precision
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arithmetic. This conversion was carried out for two basic
reasons. First it assures uniformity in all of the methods
with respect to arithmetic operations. This is important
because the time required to perform an arithmetic operation
in double precision may be significantly larger than per-
forming the same operation in single precision. The

second advantage of the conversion to single precision is

in the storage space saved in the compilation of the program.
In several cases this resulted in significant storage savings
and allowed increasing the size of the problem the code
could handle. Another programming change was made to all
gradient based methods which required analytical gradients.
These codes were converted to calculate gradient informa-
tion numerically using a forward difference approximation.
This conversion was necessary because several of the test
problems were the result of a simulation making analytical
derivatives very difficult if not impossible to calculate.
Another point in favor of numerical derivatives is the
amount of work involved in calculating the derivatives and
in inputting these derivatives to the algorithm. Supplying
analytical gradients for a ten variable, ten constraint
problem involves supplying 110 gradient functions for a
method requiring first derivatives and over 700 gradient
functions for a method requiring second derivatives. This
work is simply too time consuming and the possible source

of too many input errors to even be considered for the
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general design environment. Another programming change
involved removing all printed output from the basic itera-
tive loop of each algorithm. Thig was done to eliminate
the inclusion of print time in the total solution time.

If all printing was delayed until the final solution,
however, a significant increase in the required storage
would be required, for at each stage the intermediate
output would include the vector of design variables, the
value of the objective function and constraints and the
solution time to this point. What would be desirable would
be to calculate the difference in time between the beginning
and end of each stage and to print out all intermediate
output after the call from the timer for the stage just
finished and before the call to the timer for the next
stage. The only disadvantage with this procedure is that
a timing error is accrued with each stage which could
significantly effect the final solution time. In spite of
this drawback this timing procedure has been implemented
in each of the algorithms through the use of the CDC 6500
systems library routine SECOND which returns the elapsed
central processor time in seconds since the start of the
job. By placing a call to subroutine SECOND before and
after each solution stage the time required for each stage
can be calculated from the time difference in the two

system subroutine calls. The possible errors involved in
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computing the time in this fashion are considered in the
next section.

The final and probably the most difficult problem to
handle is what to do about the input parameters to the
codes such as initial penalty parameters and line search
criteria. Here a middle of the road approach was followed
as compared to the approaches of Eason and Fenton and
Colville. Eason and Fenton used only the recommended
values for the input parameters and if the solution was
not reached to the desired level of accuracy with these
parameters the code was considered to have failed on that
problem. Colville, on the other hand, allowed the developer
of each algorithm a free hand at adjusting the input
parameters with no upper limit on the number of trials a
code was allowed on each problem. Neither of these ap-
proaches would seem to be representative of real world
applications. The approach used by Eason and Fenton is
convenient in the sense that each code would only have to
be run once on each problem, but the input parameters are
in general much too problem dependent to allow for a single
value to be used throughout the study. No one could
practically expect an engineering designer to abandon his
attempt at the solution of a problem after a single run.
This is especially true if the development of the mathe-
matical model has taken a significant amount of time. At

the other end of the spectrum the approach used by Colville
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may be considered as an indication of the best possible
performance for each algorithm on each problem. Again

this is not the type of performance an average user would
expect in everyday use. To simulate actual usage an
initial run was made using the recommended values for the
input parameters. If a normal, satisfactory termination
was not obtained after this run an attempt was made to
adjust the input parameters using the information con-
tained in the users manual as a guide to the adjustment.

It should be noted that no attempt was made to decrease
solution times by this adjustment of the parameters

since once normal termination was achieved with all active
constraints reasonably tight (10-5 or smaller), the run was
accepted for the study. The engineering judgement required
to adjust the input parameters was developed by running
each code on the Eason and Fenton and Colville problems
before attempting to solve any of the more difficult

problems.

2.4.1 Timing Accuracy
The system subroutine SECOND returns the execution time
to an accuracy of 10_3 seconds. This means that the maximum
error which can occur on the difference of two consecutive
calls would be 10-3 seconds. This maximum error would
occur if the first call occurred just before the clock was

updated and the second call occurred just after the clock
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was updated or vice versa. For any problem which requires
a significant amount of time for a stage to be completed
this error is insignificant. For example if one tenth of
a second is required for an algorithm to complete a stage
the maximum error would be only one percent. The problem
becomes more significant when the total solution time is
small and many stages are required. This situation does
occur on several of the Eason and Fenton problems with the
reduced gradient codes which produced extremely fast
solution times for these problems. The worst case was
found to be for algorithm 11 on problem number five.

On this problem algorithm 11 completed twenty-six stages
in a total of .142 seconds. If the maximum error occurred
at each stage in the same direction (i.e., either always posi-
tive or always negative error) the total timing error
would be almost 20%. This error although only occurring
on two or three problems would still be unacceptable. To
determine a more accurate estimate of the expected error,
ten consecutive runs for OPT on problem number five were
made. The computed time for each of these runs is given
in Table 2.3, along with the average time and the standard
deviation for the runs. The standard deviation was only
.002 seconds. If a normal distribution is assumed then
even allowing for a time differing from the average by

two standard deviations would produce an error of less

than 3%. If the distribution were truly normal the



. Table 2.3 Consecutive Runs of OPT on Problem Number Five
After Twenty-six Stages.

Run Number Solution Time

.140
.143
.142
.141
.146
.144
.139
.144
.143
.141

vl W

|

Average Time = .1423
Standard Deviation = .002
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probability of a run differing from the average by more
than two standard deviations would be extremely small. So
even if the distribution only approximates a normal distri-
bution significant errors could not be expected from this
manner of timing. There are several system dependent
factors which can also influence the time required to
perform an identical set of calculations. The Purdue
Computing System consists of two CDC 6500's sharing the
same central memory, and although identical, their Speed
differs by a very small amount. Also the system load may
have an effect on how long certain opefations take. To
obtain an estimate of the errors introduced by these fac-
tors the standard timing routine suggested by Colville was
run a total of twelve times. 8Six runs were made in the
middle of the afternoon when the computing load was very
heavy. The other six runs were made late at night when
the computing load was very light. Each sequence of runs
included runs on both of the CDC 6500 machines. For all
of these runs the average time was 49.89475 seconds and
the standard deviation was .12984 seconds. Again allowing
for two standard deviations the error involved would be
less than 1%. This small level of error would have to be

regarded as being inconsequential.
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2.5 Data Reduction

Once each algorithm had been run on a problem
intermediate data including £(X), g(X), h(X) and the solution
time was available at each stage of the solution procedure.
In order to compare the relative effectiveness of different
algorithms which may follow completely different paths to
the solution some measure of the accuracy of any given
point relative to the known solution must be determined.
This is necessary so that all of the codes may be compared
at some uniform level of accuracy on each problem. Eason
and Fenton suggested two accuracy criteria. The first may
be defined as the relative error in the objective function.

This accuracy criterion may be expressed as:

ce = LEERL=EEN]  gor £(x4) 20 (2.1)
| £ (x*) |
or
ee = |£(x)| for £(x*) =0 (2.2)

In this expression £(x) is the value of the objective

function at any point X, and f£(x*) is the optimal value of
the objective function. The other accuracy criterion sug-
gested by Eason and Fenton is the relative error in the x

vector. The expression is given by

? 2
. = [t(x.,)] (2.3)
% i1 i
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where
*
xi-xi .
t(xi) = . for X # 0 (2.4)
X,
i
— *—
or t(xi) = xi for xi = 0 (2.5)

th Lariable for any point X

th

Here x, is the value of the i
and xi* is the optimal value of the i variable. By
plotting either of these accuracy criteria versus time
for all algorithms on a given problem, the time for each
algorithm to reach a specified level of accuracy may be
closely approximated. For example the relative accuracies
for three algorithms are plotted for a hypothetical problem
in Figure 2.1. Each circled point represents the end of a
stage for a given algorithm. Once the required level of
accuracy for the problem has been determined then the
time for each algorithm to reach this level of accuracy
may be read directly from this plot. For example if the
relative accuracy for the hypothetical problem is set at
1074 the solution time for algorithm A is found to be
approximately 8.6 seconds from Figure 2.1.

Each of the relative error criteria used by Eason and
Fenton have certain advantages. The expression for the
relative error in the X vector can be related to the rate

of convergence of an iterative process [47]. On the other

hand, the objective function is defined as gquantifying the
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"goodness" of a design, so the relative error in the objec-
tive function would seem to be an obvious choice for an
accuracy or error criterion. Of course the relative error
in f£(x) is related to the design variables and thus it is
also related to the relative error in the X vector.

However a one to one correspondence cannot be made which

is consistent for all problems. For example a value for

Ef of 10_5 may correspond to a value for €4 of 10_3 for one
problem and for another problem a value for e, of 1073

may correspond to a value for €y of 10"4. Eason and Fenton
used a value of the relative error in the objective
function to obtain solution times for some problems and

the relative error in ‘the ¥ vector for the other problems.
Even for problems where the same error criterion was used
the required level of accuracy was not held constant in the
Eason and Fenton study. For example on one problem the
required relative error in the X vector was specified to

be 3 x 1073

10_5. This is another inconsistency in the Eason and

and for another problem it was specified to be

Fenton study, for this means that the level of required
accuracy was not held constant for all of the problems.
The percentage error in the solution times generated by
using the relative error in the objective function at

€Eg = 10 compared to the solution times generated by

using a value of €y at the same approximate accuracy level

is presented for five algorithms on five of the initial
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test problems in Table 2.4. To remove any bias due to slight
inaccuracies in the level of the relative required accuracies

used for ¢, and €y the solution time for each algorithm was

i
normalized by dividing by the average solution time of all
five methods on that problem using the same error criteria.
The results appear to be highly problem dependent but in
several cases the difference in the normalized solution
times is almost 14%., To avoid this inconsistency only one
relative accuracy criterion will be used and the reported
solution times for all algorithms on every problem will

be at the same level of accuracy. The relative error in the
objective function was selected as the basis for the accuracy
criterion. This selection was made for several reasons.
First of all the objective function represents the quality
of a candidate design and if a wide range of points about
the optimal design vector produce little change in the
objective function, a code should not be penalized for

not precisely zeroing in on the optimal point. Secondly

for several of the test problems there are several com-
pletely different combinations of the désign vectors which
produce the optimal value of the objective function. This
makes no difference to a criterion based upon the relative
value of the objective function but it does require gpecial

consideration for a criterion based upon the relative error

in the design vector.



Table 2.4 Percentage Deviation for the Average Normalized Times Based on
e. and e€_.
f x
Algorithm Problem #1 Problem #3 Problem #7 Problem #11 Problem #14
{(9) 4.0% 9.4% 2.8% —_— 7.7%
(11) 5.3% 0.0% 13.7% 0.0% 13.4%
(13) .91% 11.4% 8.8% 1.5% 9.8%
(21) 4.6% 5.2% 13.8% 1.4% 8.4%
(31) 3.1% 5.8% 3.2% .32% 1.1%

44
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Unfortunately the relative error in the objective
function alone does not provide complete information on
the value of an intermediate point. Consider the contour
plot for the two variable problem shown in Figure 2.2. For

(1) (2)

this hypothetical problem both points x and x would
have an €¢ of 2. However this does not give a clear indi-
cation of the relative value of the two points. If

(1) the

the solution procedure was stopped at the point x
solution would be of no use since a constraint is con-
siderably violated. oOn the other hand if the solution at
x(z) was accepted a feasible design would result. This
problem would not be encountered if all algorithms remained
within the feasible region at all times but this is simply
not the case. “herefore if the relative error is to give
a complete indication of the value of an intermediate point
some indication of constraint violation must be included.
This may be accomplished in several ways. One way could
be to consider the relative error in the generaliéed
lagrangian function. The generalized Lagrangian function
may be expressed as:
L K
Li(x,u,v) = £(x) + ] v.h.(X) - ] u.g.(X) (2.6)
j=1 J ) j=1 7]
where u and v represent the Lagrange Multipliers. The

relative error may then be defined as
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E

L= lL(Xru*cV*)l (2.7)

| L (x* ,u*,v*) |

In this expression u* and v* are the values of the Lagrange
Multipliers at the optimal solution. Equation 2.6 may be
thought of as the relative error in the objective function
with an additional term added on to penalize constraint
violations with the Lagrange Multipliers acting as weighting
factors for the constraint violations. Unfortunately,
there are two problems with this expression for the rela-
tive error. First of all the Lagrange Multipliers uj* are
zero for all gj(§*) which are not active at the solution.
This means that no penalty is added £o“£he relative error
for a violation of a constraint which is not active at the
solution. The second problem is that in many cases for

the test problem set under consideration the Lagrange

2 or 1073) and do not add

Multipliers are very small (10~
a significant amount to the relative error for any con-
straint violations. Both of these drawbacks may be elim-
inated if the weighting factors are chosen to be unity.

For this case the total relative error may be defined as:

K L
e, = e + ) <g.(x)> + ¥ |hy(x)] (2.8)
t £ j=1 ] j=1 J
Again the bracket operator is used to indicate that the

summation of the inequality constraints only includes the
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5

violated subset. A value or 10 ° in the total error e, as

t
given by Equation 2.8 guarantees that the relative error in
the objective function and all of the constraints violations
are less than 10—5. This straightforward total error crite-
rion was applied uniformly to all of the test data. Plots of

the total relative error for the algorithms on each problem

may be found in Appendix C.

2.5.1 Elimination of Algorithms

It was apparent after running the algorithms on the
Eason and Fenton and Colville problems that some algorithms
were not performing well. These codes solved very few of
these relatively easy test problems and even when a problem
was solved an inordinately large amount of computer time was
required. For these reasons any code which did not solve at
least seven of these fourteen test problems was not considered
further. Table 2.5 lists the number of problems in the initial
problem test set solved by each of the algorithms considered
for the study. It should be noted that for this table any
algorithm which required more than three times the average
solution time of all of the algorithms on a given problem was
considered to have failed on that problem. The codes elimin-
ated were algorithms 2, 4,5, 6,7, 17,18, 23, 24, 25 and 30.
This reduced the number of algorithms to a total of twenty-
four. It.should be noted however, that no renumbering of the
remaining algorithms was done and the numbering scheme of

Table 2.1 still holds.
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. Table 2.5 Number of Problems Solved for the Initial Test
: Problem Set.

Algorithm Problems Solved Algorithm | Problems Solved
{1) 12 (19) 11
(2) 5 (20) 10
(3) 8 (21) 12
(4) 6 (22) 7
(5) 6 (23} 4
(6) 5 (24) 4
(7) 2 (25) 3
(8) 14 (26) 10
(9) 9 (27) 11
(10) 14 (28) 8
(11) 13 (29) 9
(12) 14 (30) 2
(13) 12 {31) 11
(14) 8 (32) 12
(15) 10 (33) 11
(16) 10 (34) 8
(17) 4 (35) 11
. (18) 5
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CHAPTER 3 RESULTS

3.1 Introduction

Many attempts have been made at developing a relative
ranking criterion for comparing nonlinear programming
algorithms. These criteria have been based on many dif-
ferent factors such as the number of problems solved or
partially solved, some weighted average’of execution times,
the total running cost including input and output units
and core usage or the estimated preparation times. The
use of different rating criteria can significantly effect
the relative rankings of the algorithms. This was demon-
strated in the Eason and Fenton study where the relative
rankings of the algorithms changed considerably depending
upon which rating criterion was used. To avoid this
problem careful consideration must be given to what
characteristics a "good" algorithm should exhibit. Cer-
tainly the ability to solve problems must be considered to
be the main characteristic of such an algorithm since this
is the basic function of any nonlinear programming algorithm.
But this quality alone doces not represent the total value
of an algorithm. Given enocugh computer time most algorithms
will solve a fairly large set of problems. To generate a

 total picture of the relative effectiveness of an algorithm
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some consideration must be given to the computational time
required for the solution of a test problem. The fact that
one algorithm solved a specific problem in seven seconds
while another required fifteen seconds is not significant in
itself, but if the same algorithm consistently produced lower
solution times considerable time savings could result in gen-
eral usage. This would especially be true for large scale
problems or for problems where the objective function or con-
straints require a considerable amount of time to evaluate.
Taken by itself, however, the relative solution times of the
different algorithms is not sufficient to comparatively

rank algorithms either since one code which was extremely
fast but only solved a few problems could rate well using
this criterion. These basic criteria, the number of prob-
lems solved and the relative solution time, may be seen

to be potentially competing objectives and a criterion

based solely one or the other may not be a good performance
indicator. Rankings involving the ease of use or prepara-
tion time were not considered since no algorithm tested
could be considered to be significantly more difficult

~to use or required a significant amount of preparation

time to input a problem. With these considerations in

mind a relative ranking criterion based on the number of
problems solved with a qualification on the relative
solution times will be developed and applied to the

- comparative test data. Results based on this ranking
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criterion will then be compared to results generated by ap-

plying the rating schemes used by Eason and Fenton.

3.2 Rating Criterion

One method for dealing with competing design
objectives is to treat the major objective as being
the only objective and to treat any secondary objectives
as constraints. This will be the approach used to develop
the rating criterion to rank the algorithms in this study.
Since the ability to solve a large number of problems in
a reasonable amount of time is the desired ranking criteria,
the rankings will be based on the number of problems
solved within a series of specified limits on the relative
solution times. The limits on the solution times will be
based on a fraction of the average time for all algorithms
on each problem. Each solution time for a problem was
normalized by dividing by the average solution time on that
problem. This produces a low normalized solution time for
an algorithm with a relatively fast solution time and a
high normalized solution time for an algorithm with a
relatively slow solution time. This normalization
essentially equalizes the time ratings on the various
problems so that the effectiveness of an algorithm on a
problem which required a very small amount of time may be
directly compared to the effectiveness on a problem that

| required a large amount of computational time. The number



53

of problems solved may now be directly related to the frac-
tion or percentage of the average solution time of all of
the methods tested on each problem. This relationship is
demonstrated for all algorithms which solved at least half
of the problems in the test set in Figure 3.1 for an

accuracy level of 10™% in ¢ It should be noted that

£
problems 9, 13, 21, 22, 28, 29 and 30 were not included in
this analysis since less than five algorithms generated

the same solution point. A discussion of the results on
these problems is presented in section 3.5. 1In Figure 3.1,
the number of problems solved at any fraction of the aver-
age solution time may be determined by drawing a vertical
line at that value of the fraction of average time and
recording the intersection with each algorithm. It can

be seen from Figure 3.1 that the performance of the algorithms
varies greatly, but the codes which have a steep slope and
attain a high value in the ordinate axis have both a good

problem solving capability and a relatively fast solution

time on the majority of the problems.

3.3 Relative Rankings

Four values of the fraction of average solution time
will be considered for the relative rankings. These values
are 25%, 75%, 150% and 250%. The 25% rating is to indicate
the codes which are extremely fast and should be considered

' for use on large and difficult problems. The 75% rating is
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perhaps the most informative rating as it demonstrates
the performance of the algorithms at a slightly better than
average solution time. The codes that perform well at this
rating could be considered to be the algorithms best suited
for general usage. The final two levels, the 150% and
250% ratings were necessary to distinguish between some
of the slower but effective algorithms. Algorithms which
rate high at these levels but not at the 75% level could be
considered robust but would require a considerable reduction
in the average solution time to be recommended for general
use. The performance for the values of the fraction of
average time will be considered for scolutions at accuracy

-4

levels of ¢, = 10 7, ¢

. 1072 and e, = 1078,

t t

3.3.1 Relative Ranking for e = 1074

The number of the twenty-four remaining problems solved
at fractions of the average time from .25 to 2.50 in intervals
of .25 may be found listed in Table 3.1l. From this table the
percentage of the problem set solved at each rating interval
can easily be calculated. The relative rankings for the 25%
rating are given in Table 3.2. From Table 3.2 it can be seen
that in general most methods solve only a very small per-
centage of total problem set within twenty-five percent of
the average solution time. The exceptions are algorithms

10, 11, and 12, all of which solved over 60% of the test

problem set at this level. All three of these algorithms
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Table 3.1 Number of Problems Solved for Various Average
Solution Time Limits for €y = 107°%.

Number of Problems Solved
Algorithm | .25tavg .50tavg .75tavg 1.00tavg 1.50tavg 2.50tavg

1 0 9 14 17 19 20
3 0 h 2 3 6 10
8 10 15 17 17 18 18
9 12 13 13 14 14 16
10 15 17 19 19 19 19
11 16 21 21 21 21 21
12 14 18 20 23 23 23
13 2 7 9 11 13 15
14 2 4 6 6 8 9
15 4 9 11 15 15 15
16 1 5 7 8 9 11
19 0 0 2 3 7 11
20 1 4 10 10 11 11
21 7 13 14 16 16 16
22 2 4 7 8 8 9
26 0 1 4 6 9 10
27 2 7 11 14 14 17
28 0 0 0 0 3 9
29 0 0 0 1l 2 7
31 0 1 3 5 9 13
32 0 0 0 4 8 15
33 0 2 4 7 13 15
34 0 1 2 4 8 10
35 0 2 5 7 9 15




Table 3.2 Relative Rankings for Algorithmi for 25%
Average Time Limit for € = 107%,

Algorithm $ of Problems Solved
11 69.6
10 65.2
12 60.9

9 52.2
8 43.5
21 30.4
15 17.4
14 8.7
13 8.7
27 B.7
22 8.7
26 4.3
16 4.3
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are generalized reduced gradient codes. The other algorithms
which rated high at the 25% rating were algorithms 9 and
8 a repetitive linear programming algorithm and another
generalized reduced gradient algorithm. The only other
algorithm to reach at least a 30% ranking was algorithm 21,
an exterior penalty method using the Davidon-Fletcher-Powell
technique to solve the sequence of unconstrained problems.
The relative rankings for the 75% rating are presented
in Table 3.3. Again the top four algorithms are all
generalized reduced gradient type methods. These algorithms
are followed by several exterior penalty function methods
and the repetitive linear programming method RALP. The
highest rating for an interior penalty function was a 37.8%
rating achieved by algorithm 27. The relative rankings
for the 150% and 250% ratings are presented in Tables 3.4
and 3.5. The main point to note in these Tables is that
none of penalty function methods with the exception of
algorithm 1 rate as well even at these levels as the three
generalized reduced gradient algorithms 10, 11, and 12

did at the 75% rating.

3.3.2 Relative Rankings for € T 10_5 and Ep = 10

Table 3.6 presents the number of problems solved at

-6

various fractions of the average solution time for an

accuracy in the total error of 10-5. Rankings for the

25%, 75%, 150%, and 250% ratings are presented in



Table 3.3 Relative Rankings for Algorithmﬂ for 75%
Average Time Limit for € = 1077,

Algorithm % of Problems Solved
11 91.3
12 87.0
10 82.6

8 73.9
1 60.9
21 60.9
9 56.5
15 47.8
27 47.8
20 43.5
13 39.1
16 30.4
22 30.4
14 26.1
35 21.7
26 17.4
33 17.4
31 13.0
19 8.7
34 8.7
3 8.7
All others 0
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Table 3.4 Relative Rankings for Algorithgi for 150%

Average Time Limit for €y = 10
Algorithm % of Problems Solved

12 100
11 91.3
1l 82.6
10 82.6
8 78.3
21 69.6
9 65.2
15 65.2
27 60.9
13 56.5
33 56.5
20 47.8
16 39.1
31 39.1
35 39.1
26 39.1
14 34.8
22 34.8
32 34.8
34 34.8
19 30.4
3 26.1
28 13.0
29 8.7

60



Table 3.5 Relative Rankings for Algorithms for 250%
Average Time Limit for Ep = 10-4,

Algorithm % of Problems Solved
12 100
11 91.3

1 87.0
10 82.6
8 78.3
27 73.9
9 69.6
21 69.6
15 65.2
13 65.2
32 65.2
33 65.2
35 65.2
31 56.5
16 47.8
19 47.8
20 47.8
3 43.5
26 43.8
34 43.5
14 39.1
22 39.1
28 39.1

29 30.4
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Table 3.6 Number of Problems Solved for Various Average

Solution Time Limits for €, = 107-,
‘ Number of Problems Solved
Algorithm .25tavg .50tavg .75tavg 1.00tavg 1.50tavg 2.50tavg

1l 0 5 9 10 10 11
3 0 1 2 2 3 7
8 11 14 15 16 16 17
9 i1 12 12 12 14 15
10 16 17 19 19 19 19
11 15 20 21 21 21 21
12 12 18 20 23 23 23
13 1 7 8 9 10 10
14 2 4 5 5 6 6
15 2 8 10 12 13 14
16 1 4 6 7 8 9
19 0 0 2 4 5 6
20 0 3 6 6 6 6
21 5 9 11 11 11 11
22 1 2 2 5 5 5
26 0 1l 3 5 8 8
27 0 3 9 11 13 14
28 0 0 0 1 2 8
29 0 ] 0 0 2 7
31 0 1 2 4 8 12
32 0 0 0 0 4 11
33 0 1l 4 5 11 14
34 0 1 1 3 6 10
3s 0 2 4 7 8 14
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Tables 3.7 through 3.10. These rankings basically demon-
strate the same trends as did the rankings for the accuracy

in ¢, in 10-4. Throughout the rankings the generalized

t
reduced gradient algorithms dominate with a larger gap
developing between .the reduced gradient algorithms and
the penalty type methods. As the accuracy criteria is

6, the performance of all algorithms

raised to an e_ of 10~
decreased. This is to be expected for most algorithms
are not able to obtain this increase of required accuracy
in the objective function and also maintain a sum of
constraint violations of less than 1075, Again the excep-
tion may be seen to be the reduced gradient algorithms
which still maintain their relative high percentage of
problems solved at all relative rankings as demonstrated

in Table 3.11.

3.4 Comparison with Other Ranking Schemes

Eason and Fenton proposed several rating schemes to
rank the algorithms in their comparative study. The first
criterion used was simply the total number of problems
solved which would be closely related to the ranking used
in this study at the 250% of the average solution time
rating. Several other rating schemes which involved the
solution times in some weighted fashion were also used.
These criteria involved the average ratio of execution time

' to minimum execution time, the average ratio of execution



Table 3.7 Relative Rankings for Algorithms for 25%
Average Time Limit for € = 10-5,

Algorithm % of Problems Solved
11 69.6
10 65.2
12 52.2
8 47.8
9 47.8
21 21.7
15 8.7
14 8.7
13 : 4.3
16 4.3
22 4.3
All others 0




Table 3.8 Relative Rankings for Algorithmg for 75%
Average Time Limit for € = 1072,

Algorithm $ of Problems Solved
10 91.3
12 87.0
11 82.6

8 65.2
9 52.2
21 47.8
15 43.5
1 39.1
27 39.1
13 34.8
16 26.1
20 26.1
14 21.7
33 17.4
35 17.4
26 13.0
3 8.7
19 8.7
22 8.7
31 8.7
34 4.3
All others 0
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Table 3.9 Relative Rankings for Algoritggs for 150%
Average Time Limit for et==10 .

Algorithm $ of Problems Solved
12 100
11 91.3
10 82.6

8 69.6
9 60.9
15 56.5
27 56.5
21 47.8
33 47.8
1 43.5
13 43.5
16 34.8
26 34.8
31 34.8
35 34.8
14 26.1
20 26.1
34 26.1
19 21.7
22 21.7
32 17.4
3 13.0
28 8.7
29 8.7
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Table 3.10 Relative Rankings for Algorithmg for 250%

' Average Time Limit for Ey = 10->,
Algorithm % of Problems Solved
12 100
11 91.3
10 82.6
8 73.9
9 65.2
15 60.9
27 60.9
33 60.9
3s 60.9
31 52.2
1 47.8
32 47.8
21 47.8
13 43.5
34 43.5
16 39.1
26 34.8
28 34.8
29 30.4
3 30.4
14 26.1
19 26.1
20 26.1
22 21.7
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Table 3.11.

Number of Problems Solved for Various Average

68

Solution Time Limits for €y = 1076,
Number of Problems Solved
Algorithm .25tavg .50tavg .75tavg 1.00tavg 1.50tavg 2.50tavg

1 0 5 8 9 9 9
3 0 0 0 9 1 2

8 9 11 11 13 14 16

9 4 6 6 6 8 9
10 11 13 14 14 14 14
11 9 12 13 15 15 15
12 8 13 14 15 17 17
13 1 4 5 5 5 5
14 2 4 5 5 6 6
15 2 6 8 9 10 10
16 2 5 5 5 7 7
19 0 0 2 4 5 6
20 0 1 4 4 4 4
21 2 S 5 6 6 6
22 0 1 1 3 4 4
26 0 0 3 3 6 6
27 0 1 3 6 8 9
28 0 0 0 0 1 8
29 0 0 0 0 0 8
31 0 1 2 2 8 11
32 0 0 0 1l 5 7
33 0 1 4 5 7 12
34 0 1 1 4 5 8
35 0 1 6 6 8 11
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time to mean execution time and the sum of execution times.
The first ranking system involving the average ratio of
executidn times to the minimum execution time seeks to
compare each method with a hypothetical method which would
be fastest on every problem. This ranking was used first
in the study conducted by Abadie and Guigou and may be

define as

Ez’_f_af_
where
t
£, = ap (3.2)

P~ min, (t5p)

Here tap represents the solution time of method a on prob-
lem p, mina(tap) represents the lowest solution time of
all of the methods which solved problem », and Sl repre-
sents the total number of problems solved by algorithm a.
The second ranking system which involves the average ratio
of execution times to the mean solution time may be defined

as

|
]
|
~1
o

(3.3)

w1
=

where

£, - i (3.4)

This ranking criteria is very similar to the first system

' described with the exception of the minimum time on problem
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p being replaced by-the mean time on problem p. Both of
these ranking criteria were meant to given an indication

of how well each code compared relative to the other
algorithms in the study but neither rating scheme gives an
indication of how many problems were solved and a code which
solved only a very few problems could rate very high using
these criteria. The third ranking scheme proposed by

Eason and Fenton is simply the sum of the execution times
and may be represented by

p

When an algorithm failed to solve a problem a time equal

to twice the slowest execution time recorded for that

problem was substituted for tzp in the summation. The

test data was reevaluated using these rating criteria

and the results are presented in Table 3.12. The ratings
still show methods 10 and 11 to be the best by almost a

two to one margin over method 12. BAll three are generalized
reduced gradient algorithms but it should be noted that

only method 12 solved all of the problems. Also in the fap
rating method 22 ranks 3rd' even above method 12, while in
the Tap ratings method 22 would rank ninth. It is interesting
to note that method 22 is an exterior penalty function using
a pattern search to solve the unconstrained minimization prob-

- lems and only solved nine out of the twenty-three problems.



Table 3.12 Eason and Fenton Ratings for €y = 10

Algorithm .I—E-ap fap Te
1 .673 10.25 641
3 1.475 22.65 1901
8 .588 5.19 801
9 .632 9.94 1256
10 .151 1.12 660
11 .175 1.57 396
12 .299 3.00 295
13 .739 12,33 1390
14 .652 8.08 1895
15 .498 6.16 1512
16 .713 13.99 1804
19 1.574 22.69 1862
20 .559 9.33 1664
21 .359 5.78 1220
22 .613 2.75 1605
26 1.453 19.81 1981
27 .654 12.98 1087
28 1.989 17.17 1984
29 2.204 46.24 1971
31 1.764 27.15 1349
32 1.809 40.02 1550
33 1.471 34.60 1377
34 1.962 45,31 1715
35 1.993 36.43 1366

71
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The rating based on the total execution times simply

reflects the number of the more difficult problems solved
since on a difficult problem the penalty of twice the

slowest time is as hard to overcome. The ratings for this
criterion follow very closely to the number of problems
solved with the reduced gradient algorithms first and with
algorithm 1 rating very high which contradicts this method's
poor showing on the first two rating criteria. All in

all, however, it is clear that even with the inconsistencies
generated in the rating criteria used by Eason and Fenton
that the generalized reduced gradient algorithms rank very
well. This is simply because the reduced gradient algorithms
solve a large number of problems in a relatively small amount
of computational time and will show up well in almost any

kind of rating system.

3.5 Additional Problems

The problems not included in the relative rankings
should still be considered, for although very few codes
solved these problems many made significant progress or
at least found feasible points. Several of the problems
have many local minima and others had a very small feasible
region making relative comparisons very difficult. There-
fore each problem will be considered individually and the
performance of each algorithm will be noted. Complete prob-

lem descriptions and references may be found in Appendix B.
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3.5.1 Problem Number Nine

Problem number nine was used in the comparative study
conducted by Eason and Fenton. It involves the design of
a chemical reactor and has three design variables, nine
functional constraints, and upper and lower bounds on two
of the variables. The best solution reported by Eason and
Fenton had an objective function value of -4.2446134. No
algorithm in this study found a point near this solution.
However when several algorithms were started from this
point an unbounded solution was found for which the temper-
ature drop in the cooling coil became infinite. An
additional constraint was placed on the maximum temperature
drop in the cooling coil of 114 degrees and the solution
reported by Eason and Fenton then became a local minimum.

The best solution found from the specified starting

point was f(x) = -3.995 by algorithm 16. Three other

mgthods found solutions below f(x) = -3. These were
method 32 with £(X) = -3.43, method 35 with f(X) = -3.257
and method 34 with f£(X) = -3.100. So both exterior and

interior penalty functions algorithms using gradient

and nongradient searching techniques performed well on

this problem. Algorithms 9, 10, 19, 20, 21, 22, 26, 27, 28,
29, 31 and 33 all found solutions with a final value of the
objective function less than -2.0 which would all be con-

' sidered to have partially scolved the problem in the Eason

and Fenton study. The other methods demonstrating any
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significant amount of progress were algorithms 11 and 13
both of which generated final values in the objective func-
tion between -1.7 and ~1.8. The remaining algorithms

demonstrated little or no progress.

3.5.2 Problem Number Thirteen

Problem number thirteen was also used in the study
conducted by Eason and Fenton. It involves selecting gear
ratios for an automobile to produce the minimum time to
accelerate to 100 mph. The RPM-Torque curve was specified
at fourteen points and in the original problem a torque
value was interpolated from the data for each RPM value.
This procedure was modified by fitting a series of cubic
splines through the data so for each range of RPM data
the torque was available in a closed form. This change
was implemented because the interpolation proved to be
very time consuming and produced no increase in accuracy.
The objective function is discontinuous over the whole
feasible region in finite steps of .0001 seconds. To
obtain any gradient information the step increment for the
calculation of numerical derivatives had to be on the
order of 10_3. Apparently with this large increment the
derivatives calculated were not accurate enough to f£ind the
optimal solution. This is borne out by the fact that the
best solutions were produced by the nongradient methods.

" Even for the nongradient methods the solutions varied
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considerably with the best solution recorded by algorithm
16 of £(X) = 26.79 seconds. Other good solutions were
recorded by method 13 with a final f(x) = 27.22 seconds and
by method 22 with a final f(X) = 27.24 seconds. All three
of these methods employ a type of direct search procedure.
The best solutions reported by the gradient based methods
were centered around 27.50 seconds by algorithms 1, 10,

11, 12, 14, 15, 19, 20, 21 and 33. BAll other algorithms
stopped above 27.70 seconds. The main point made by this
problem is the need for an algorithm employing a non-

gradient technique for some discontinuous problems.

3.5.3 Problem Number Twenty-one

Problem number twenty-one is a mathematical programming
model of a three stage membrane separation process. The
problem contains thirteen design variables, thirteen
' functional inequality constraints and upper and lower
bounds on all of the variables. This problem proved to
be very difficult because the feasible region is very small
and many algorithms were simply unable to locate a feasible
point. The solution is reported by Dembo as f£(x"*) =
97.591034. This solution was located by algorithms 12 and
31, while algorithm 13 produced a solution with £(x) =
98.332. Several algorithms reached the vicinity of the
optimal solution but did not terminate at a feasible

| point. These algorithms include methods 1, 19, 20, 21, 32,



76

33, 34 and 35. Several other algorithms terminated at a
feasible point with objective functions in the range of 102
to 120. These algorithms were metheods 9, 15, and 22. No
other algorithms terminated at a point yielding an objective
function value of less than 200, but it should be noted that
methods 8, 10, 11 and 14 did produce feasible points. The

remaining algorithms made no progress at all.

3.5.4 Problem Number Twenty-two

This problem is essentially an extension of problem
twenty~-one only now a five stage membrane separation process
is being modeled. The problem contains sixteen variables,
nineteen functional inequality constraints, and upper and
lower bounds on all of the design variables. As with prob-
lem twenty~five many algorithms had difficulty locating a
feasible point. The solution reported by Dembo has an opti-
mal value of the objective function of 174.788807. This so-
lution was found by algorithms 9, 15 and 31. Algorithms 14,
16, 32, 33, 34 and 35 terminated in the approximate vicinity
of the solution but were unable to locate a feasible point.
Algorithms 13 and 22 terminated at feasible points with ob-
jective functions under 220. Algorithm 10 also terminated in
this vicinity but at an infeasible point. While no other
method found a feasible point producing an objective function
of less than 600, both algorithms 11l and 12 located feasible
points.

Both problem twenty-one and twenty-two are representa-

tive of a wide class of problems where just locating a
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feasible point is difficult. Most of the algorithms tested
had great difficulty with these two problems but this could
also be attributed in part to the poor relative scaling be-
tween the design variables which range in value from lt')“6 to
103. The only algorithm to solve both problems was algorithm
31 an interior penalty function method. It should be noted

also that the large majority of time spent by any interior-

type method was in generating a feasible starting point.

3.5.5 Problem Number Twenty-eight

This problem involves the design of a flywheel of arbi-
trary shape to generate the maximum kinetic energy for a spec-
ified volume and rotational speed. The inside radius of the
flywheel was specified as well as the maximum radius and the
maximum thickness the flywheel may obtain. The problem in-
volves five design variables including the flywheel thickness
at the inner radius, the slope of the thickness function at
the inside radius, two Raleigh-Ritz Fourier coefficients and
the outside radius of the flywheel. Originally the problem
contained seven Raleigh-Ritz Fourier coefficients and the ro-
tational speed was also included as a design variable but the
problem had to be reduced to enable practical solution times.
The problem contains three functional inequality constraints,
one of which is a constraint on the maximum allowable stress
at any radial 1§cation in the flywheel. The calculation of
this constraint involves the solution of a boundary value
problem for a second order differential equation. An itera-

tive solution was employed for the solution of this constraint
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which required approximately .75 seconds of computational
time for each evaluation of the constraint. With an upper
limit on the allowed computational time of 500 seconds this
only allowed for slightly over 650 constraint evaluations.
Only two algorithms were able to produce the optimal solution
in less than 150 seconds. Both algorithms 10 and 11 found
the optimal solution of £(xX) = -5.558. Three other algorithms
terminated at feasible points with an objective function val-
ue less than -5.0. These algorithms were methods 12 and 15
which generated final solutions with f£(x) = -5.3, and method
1 which terminated at £(X) = -5.1. Only four other algorithms
were able to make any progress within the allowed 500 seconds.
These were method 35 with a final objective function value of
-4.66, method 20 with f(x) = -4.48, method 8 with £(x) =

-3.6 and method 29 with f(x) = -2.11.

This problem was included to represent the large number
of engineering problems in which the evaluation of the objec-
tive function or constraints involves a time consuming itera-
tive analysis, and the fact that both of the algorithms solv-
ing the problem were generalized reduced gradient type

methods should be noted.

3.5.6 Problem Number Twenty-nine
This problem involves maximizing the profit rate for the
operation of a multi-spindle automatic lathe. The problem
contains ten design variables, thirteen inequality constraints
and one equality constraint. The overall performance of the

algorithms in the study was very poor on this problem. Only
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two algorithms located the optimal solution of £(x*) =1615.
These algorithms were methods 11 and 12, again both gener-
alized reduced gradient type methods. Two other algorithms,
methods 16 and 13 made significant progress with final ob-
jective function values of -1542 and -1337 respectively. No
other algorithms made any significant progress with the large
majority terminating as soon as the equality constraint was

located.

3.5.7 Problem Number Thirty

This problem involves the design of a waste water treat-
ment plant to minimize the total construction cost. The
problem contains nineteen design variables, one functional
inequality constraint, eleven equality constraints, and up-
per and lower bounds on all of the variables. The presence
of eleven nonlinear equality constraints presented an ex-
treme level of difficulty for most of the algorithms and no
penalty type method was able to locate a feasible solution.
Only algorithm 12 was able to generate the specified solution
point of f£(x*) = 24.3841. The only other algorithms which
even located feasible points were methods 10 and 11, both of
which terminated with objective value functions in the vicin-
ity of 43.6400., This solution point was a local minimum for
the problem as both of the methods terminated when the re-
duced gradient went to zero. Both this problem and problem
29 demonstrate the difficulty the penalty type methods have

in the presence of nonlinear equality constraints.
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CHAPTER 4 DISCUSSION AND EXTENDED RESULTS

4.1 Introduction

The results from the last chapter indicate an apparent
superiority for the linearization type methods over the
penalty-type methods. In this chapter the performance of
each general classification of algorithms will be con-
sidered with attention given to the algorithms which demon-
strated the best performance. Also several details will
be considered about the manner in which the comparative
study was conducted which could have possibly effected the
comparative results. The items to be considered are the
choice of system compilers and the possible effects from
the variation of the input parameters. Also the portion
of the total solution time spent in each computational
phase will be considered for several algorithms. This
will be done to determine where the algorithms which performed

well in the study spend the majority of computational time.

4.2 Discussion of Results

Within each major classification of algorithms, the
linear approximation methods, the exterior penalty function

methods and the interior penalty function methods the
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performance of the codes tested varied considerably. To
indicate which programming features within each classifi-
cation proved to be effective on the test problem set

the perforﬁance of each algorithm will be discussed. It is
not the intention of the author to promote the use of any
specific algorithm over another but to point out the type of

algorithm which was most effective.

4.2.1 The Linear Approximation Methods

This classification includes both the repetitive linear
programming algorithms and the generalized reduced gradient
algorithms. All of the linear approximation methods with
the exception of algorithm 4 performed very well. Algorithm
4, a repetitive linear programming method, was removed from
further consideration after only solving six of the initial
test problem set. This algorithm had difficulty with
problems 4, 5, and 12, all of which had unconstrained
solutions, and failed to satisfy the equality constraints
on problems 6 and 15. Good progress was made on problems
11, 14 and 16 but the method had difficulty in adequately
satisfying all of the constraints active at the solution.
The other repetitive linear programming method, algorithm 9,
fared much better. Again trouble was encountered on the
essentially unconstrained problems 4 and 5 but a method
relying on a linear programming routine would not be
- expected to do well on problems where the solution is not

constrained.- With the additional programming to handle
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eguality constraints using Newtons method, algorithm 9 did
nbt encounter much difficulty with the problems containing
equality constraints, with the exception of problem number

6 for which Newtons method diverged while trying to initially
satisfy the equality constraints. The other problems where
difficulty was encountered were problem 23 where trouble was
encountered in satisfying the inequality constraint, and
problem 25 where significant progress was made but much

time was consumed in locating the constraint which was tight
at the solution. This was probably due to the fact that a
significant distance had to be traveled in the feasible
domain before the constraint is encountered. It should

be noted that algorithm 9 was one of the few codes to solve
problem 27 which contained forty-eight design variables.

The performance of algorithm 9 on the problems it solved

was quite good. For a total error criteria of e = 1074,
algorithm 9 solved over fifty percent of the problems in

the study in less than 25% of the average solution time.

The general trend was either a relatively fast solution

or none at all for only four additional problems were solved
after the 25% rating. On the additional problems consider-
able progress was made on problems 9 and 21 and it was one
of the three algorithms to find a solution to problem 22.

No progress was made on problem 13, another problem with an

unconstrained solution, and on problems 28, 29, and 30. On

' problem 28 great difficulty was encountered in satisfying
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the maximum stress constraint which is highly nonlinear, on
problem 29 the equality constraint was satisfied but no
significant progress was made, and on problem 30 Newtons
method again diverged while trying to locate a point with
initial equality constraint feasibility. Overall performance
then, was very good but the method encountered difficulty
moving through unconstrained regions and when in the presence
of highly nonlinear constraints. Handling the equality
constraints using Newton's method proved to be quite
effective with the exception of finding an initial feasible
point. Perhaps the introduction of artificial variables for
the equality constraints, as is done with several of the
reduced gradient algorithms, would help with this problem.

The effectiveness of the reduced gradient algorithms
was unmatched by any other type of algorithm. The four
generalized reduced gradient algorithms included in the
study all performed extremely well. These four algorithms
held four of the top five rankings in the relative ratings
for all levels of accuracy.

Algorithm 12, employing the Feltcher-Reeves conjugate
gradient technique to generate search directions was the
only method which was able to solve all twenty-three of the
test problems included in the relative rankings. It
should also be noted that all problems were solved within
100% of the average time indicating that algorithm 12 is

"not only very robust, but also very fast. For the additional
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test problems no progress was made on problem 9 but progress
was made on problem 13, problems 21, 29 and 30 were soived,
significant progress was made on problem 28, and a feasible
point was found for problem 22 although not much progress
was made.

Algorithm 11, again employing the Fletcher-Reeves con-
jugate gradient technique to generate search directions,
was also very effective. Out of the twenty-three rated
test problems, algorithm 1l solved twenty-one. The two
problems which were not solved were problem 12 where trouble
was encountered in moving off of a variable bound and problem
17 where significant progress was made but progress near the
solution was very slow. While not solving as many problems
as algorithm 12, algorithm 11 was slightly faster on most
problems which can be seen by the relative rankings for
25 and 75 percent of the average time ratings where algorithm
11 holds down the top position. Performance on the addition=-
al problems was again very good, with progress being made
on problems 9 and 13, feasible points were found for
problems 21, 22 and 30, and the solution was found for
problems 28 and 29.

Algorithm 10 which employs the Broyden-Fletcher-Shanno
variable metric technique to generate search directions
solved all but four of the twenty-three rated test problems.
The problems where difficulty was encountered were all from

- the Dembo study, problems 17, 18, 20 and 23, and in each case
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progress was made. For each of these problems the termina-
tion was caused by the step size going to zero. Again
while the number of problems solved is less than for algor-
ithms 11 and 12, algorithm 10 was extremely fast as can be
demonstrated by the high relative rankings at the 25%

and 75% average time ratings. In fact, this algorithm
produced the fastest time on the majority of the test
problems. Performance on the additional test problems was
also good. Significant progress was made on problems 9 and
13, a solution to problem 28 was found, and a feasible point
was located for problems 21 and 30. However, no significant
progress was made on problem 29 and a feasible point could
not be located for problem 22.

Algorithm 8 employs the Davidon-Fletcher-Powell variable
metric technique to generate search directions. 1In all
twenty of the twenty-three rated test problems were solved,
but several problems required a significantly large amount
of computational time and only eighteen problems were solved
within 250% of the average time placing algorithm 8 directly
behind algorithms 10, 11, and 12 for the majority of the
relative rankings. The problems where difficulty was
encountered were problem number 19 where significant
progress was made before the step size went to zero, and
problems 23 and 27 where a singular matrix was encountered.
The general speed on the majority of the problems was good

" but from the relative rankings for the 25% and 75% average
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time ratings it is apparent that algorithm 8 was not quite
fast as the other reduced gradient algorithms. The per-
formance on the additional problems was not quite up to par
either with significant progress made only on problem 8, and
feasible points located for problems 21 and 30.

The overall performance of the reduced gradient algor-
ithms could be rated nothing less than outstanding. The
performance was good on both large and small scale problems,
and the methods handled equality constrained problems and
problems with highly nonlinear constraints with relative
ease. Algorithms 11 and 12 ranked first or second in all
of the relative ratings and algorithms 10 and 8 were never
ranked lower than fifth. Also, the rankings for the reduced
gradient algorithms were not effected by an increase in the
level of required accuracy as were some of the penalty type
methods, another outstanding feature of the generalized

reduced gradient algorithms.

4.2,2 The Exterior Penalty Function Methods

In all there were twelve algorithms in this classifi-
cation, with the majority resulting from optimization pack-
ages where several different unconstrained search techniques
were applied to the same penalty function. The performance
of the exterior penalty function methods was quite varied,
with several algorithms performing well while others
. performed quite poorly and could not be recommended for

general use. The algorithms which performed poorly and were
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eliminated after the initial test problem set were methods
17 and 18. The unconstrained search techniques used for
these two methods were univariate search and steepest
descent, both of which proved to be very time consuming.
Algorithm 17 only solved six of the initial test problens,
and for two of the six solved the solution time was well over
three times the average time. The method had trouble satis-
fying the equality constrained problems and even had signifi-
cant difficulty on problems where several inequality con-
straints were tight at the solution. Also as the number

of design variables increased the time consumed became ex-
tremely large. Algorithm 18 fared only slightly better
solving seven of the fourteen initial test problems and

only on problem 1 was the solution time over three

times the average. However progress was still very slow
especially on the larger problems and while progress was
made on the majority of the problems in the initial test
set, difficulty was encountered on equality constrained
problems and in final constraint satisfaction for the tight
ineguality constraints. Of the ten algorithms which made it
into the final ratings only six solved over half of the
rated test problem set. The algorithms which solved

less than half of the problems were methods 14, 16, 20

and 22. Algorithm 14 which uses the conjugate gradient
technique of Fletcher-Reeves for the unconstrained minimiza-

tions only solved nine of the twenty-three rated problems.

[



No progress was made on problems 6, 14, 18 and 25, slight
progress was made on problems 4 and 27, and significant
progress was made on problems 8, 11, 16, 17, 19, 20, 23
and 24. The major difficulty on these problems was the
final constraint satisfaction was not adequate. For the
additional test problems no progress was made on problems
9, 28, 29 and 30, good progress was recorded on problems
13 and 22, and a feasible point was found for problem 22.
Algorithm 22 was also only able to solve nine of the rated
test problems. Employing a Hooke-Jeeves pattern search
for the unconstrained minimizations, algorithm 22 made no
progress on problems 6, 12, 26 and 27, slight progress on
problems 14 and 17 and significant progress was recorded
on problems 1, 2, 3, 16, 17, 19, 20, 23 and 24. The major
difficulties were generally slow progress and the inability
to attain constraint satisfaction on both equality and
tight inequality constraints. For the additional test
problems, significant progress was recorded on problems 9
and 13. Progress and termination at a feasible point were
accomplished on problems 21 and 22, and no progress was made
on problems 28, 29 and 30. Algorithm 16, which employed a
combination of Hooke-Jeeves pattern search for the vari-
ables near their bounds and the Simplex method for the
others as an unconstrained minimization technigque, solved
a total of eleven of the rated test problems. With the

' exception of problems 14 and 27, however, significant
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progress was made on every problem. Even good progress was
made on the equality constrained problems 6 and 16 with the
only problem being the final level of equality constraint
satisfaction. The algorithm was generally very effective
at locating the region of the optimal solution but diffi-
culty was encountered in moving in heavily constrained
regions. On the additional test problems the best solutions
to problems 9 and 13 were recorded by algorithm 16, and
significant progress was made on problems 22 and 29. So
while the total number of problems solved by algorithm 16
was not very impressive, the ability to make significant
progress on problems was. An algorithm such as method 16
would be valuable to apply to the problems where the gradi-
ent methods encounter trouble. Algorithm 20, which also
solved 11 of the rated test problems, employs the Fletcher-
Reeves conjugate gradient technique for the unconstrained
minimizations. Trouble was encountered on the equality
constrained problems 6, 16 and 29, but good progress was
made on all other problems with the excéption of problem

27 where only slight progress was made. On each of prob-
lems 7, 17, 18, 19, 20, 24, and 25 good progress was made
until the actual vicinity of the optimal solufion was
reached. Again the major problem encountered was the in-
ability of the code to attain adequate constraint satis-
faction. On the additional test problems, significant

' progress was recorded on problems 9, 13, 21, 22 and 28.
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The overall speed of algorithm 20 on the problems'solved
was quite good with ten of the eleven problems solved within
75% of the average time.

The remaining six algorithms employing an exterior
penalty function approach solved at least half of the rated
test problem set. Algorithm 19, employing the conjugate di-
rection method of Powell, solved thirteen of the rated test
problems. The basic problem with this algorithm was that
for most cases it was very slow. Of the thirteen problems
solved ten required a longer than average time for solution.
For the problems not solved, significant progress was made
on problems 14, 16, 17, 19, 20, 24 and 25 but convergence
toward the optimal solutions was extremely slow, especially
for the problems which had over five design variables. 1In
addition no progress was recorded on problem 27, and prema-
ture termination occurred on problems 6 and 26 as the equal-
ity constraints were satisfied. On the additional test
problems progress was made on problems 9, 13 and 21.
Algorithm 13 solved a total of fifteen of the rated test
problem set. The pattern search method of Hooke and Jeeves
is used to solve the successive unconstrained stages. As
far as the number of problems solved, algorithm 13 ranked
higher than any other nongradient technique. The compu-
tational speed was also good with eleven of the fifteen
problems being solved within the average solution time.

" The only problem where no progress was recorded was problem
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27 which contained forty-eight design variables. For the
other problems where the optimal solution was not reached,
some progress was made on problem 14, significant progress
was made on problems 17, 19, 23 and 24, and a local minimum
was found for problem 4. Progress was also recorded on
several of the additional test problems. Good progress

was made on problems 9 and 13, a feasible, near optimal
solution was recorded on problems 21 and 22 and significant
progress was made on problem 29. The performance of this
algorithm was exceptional for a nongradient method and
movement was even recorded on all of the equality constrainei
problems, with the exception of problem 30, which can not be
said of most of the other penalty function algorithms. All
four of the remaining algorithms employ a variable metric
technique for the unconstrained minimizations. Applying the
Davidon-Fletcher-Powell technique for the unconstrained
optimization stages, algorithm 15 solved a total of fifteen
of the rated test problems, ten of which were solved with-
in 75% of the average time at an accuracy level of ey = 1077,
The major troubles encountered with algorithm 15 were }n
the satisfaction of the equality constraints for problems

6, 15, and 27, and in the satisfaction of the tight
inequality constraints for problems 17 and 20. Also, no
progress was made on problems 14 and 16 and only slight
progress was made on problem 25. Performance on the

" additional test problems was also fairly good with the
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solution found for problem 22, and good progress was made
on problems 13, 21 and 28. Algorithm 21, which also ap-
plies the Davidon-Fletcher-Powell technique for the uncon-
strained stages, solved sixteen of the rated test problems,
fourteen of which were solved within 75% of the average
time for an accuracy level of £y = 10"4. Troubles
encountered again involved constraint satisfaction, with
the equality constraints on problems 6, 26, and 27, and
with the tight inequality constraints on problems 14, 17,
18 and 23. On the additional problems significant progress
was made only on problems 9, 13 and 21. Algorithm 1, again
employing the Davidon~Fletcher-Powell technique for the
unconstrained minimizat;ons, solved twenty of the twenty-
three rated problems. The time required for solution was
generally longer than required for algorithms 15 and 21 but
the fact that significantly more problems were solved
resulted in a higher relative ranking for the ratings

above the 75% average time ratings. Seventeen of the twenty
problems were solved within 100% of the average time and
nineteen were solved within 150% of the average time. Two
of the three problems where trouble was encountered
involved the satisfaction of the equality constraints.
These were problems 6 and 26. On problem 23 good progress
was made but the final solution was not reached. For the
additional test problems significant progress was reported

- on problems 13, 21, and 28. The biased penalty function
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used in algorithm 1, which has the effect 6f reducing the
distortion of the penalty surface at successive stages,
appeared to enable the algorithm to satisfy the inequality
constraints which are tight at the solution to a better
extent than the other exterior penalty function methods.
This resulted in ratings close to those of the reduced
gradient algorithms at the higher average time ratings.
The last of the exterior penalty function methods, algorithm
35 emplo; 3 the Broyden-Fletcher~Shanno technique for the
unconstrained penalty stages. The algorithm solved every
problem of the rated test set with the exception of problem
27 where good progress was made. The reason the algorithm
did not fare well in the ratings was in the length of time
required to reach the solution. Only seven of the problems
were solved within 100% of the average time and only fifteen
problems were solved within 250% of the average time.
Per formance on the additional test problems was fair to
good with significant progress being made on problems 21,
22 and 28. If the rate of convergence could be improved for
this algorithm its relative rating would improve considerably
for it solved more problems than all but one algorithm on
the rated test set.

The overall performance of the exterior penalty func-
tion methods was widely varied but the algorithms which
employed a variable metric method for the successive un-

' constrained stages generally performed well. The basic
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problem encountered was the ability to achieve constraint
satisfaction on problems which had several constraints active
at the solution. Difficulty in moving on problems contain-
ing nonlinear equality constraints was also a problem common
to most of the algorithms. 1In comparison to the generalized
reduced gradient algorithms, the exterior penalty function
methods were generally slower on most problems, but several
of the algorithms, methods 1, 15 and 21 ranked directly
behind the reduced gradient algorithms in most of the
ratings. As the allowable level of total error was de-
creased the gap between the exterior penalty function
algorithms and the reduced gradient algorithms widened with
the inability to achieve the required level of constraint
satisfaction for the penalty function algorithms being the

major contributing factor.

4.2.3 The Interior Penalty Function Methods

Seventeen algorithms tested in the comparative study
were contained in this general classification. Algorithms
32, 33 and 34 were actually mixed penalty functions using
an interior penalty form for all inequality constraints
satisfied at the starting point and an exterior form for
the initially violated constraints, but were included in
this classification. Of the seventeen algorithms, eight
were removed from final consideration due to poor per-

\

formance on the initial test problem set. These algorithms
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were methods 2, 5,6, 7, 23, 24, 25 and 30. The specific per-
formance of each of these algorithms will not be discussed
but it should be noted that all of these algorithms suffered
from slow convergence characteristics, the inability to
approach the tight inequality constraints to attain the re-
quired level of accuracy in the objective function and
trouble in solving the equality constrained problems. Of the
remaining nine algorithms, four failed to solve half of the
rated test problem set. These algorithms include methods 3,
26, 28 and 29.

Algorithm 3 employed a Hooke-Jeeves pattern search tech-
nique to solve the successive unconstrained stages and was
only able to solve eleven of the rated problem set. No pro-
gress was recorded on problems 6, 15, 23, 26 and 27, a local
minimum was found for problem 4 and significant progress was
made on problems 1, 12,14, 17, 20 and 24. For the problems
where significant progress was made the difficulty was again
the inability to attain a high level of constraint satisfac-
tion. No significant progress was recorded on any of the
additional test problems.

Algorithm 26 employs Fletcher-Reeves conjugate gradient
technique to handle the unconstrained minimizations. In all
eleven of the rated test problems were solved. WNo progress
was recorded on problem 23 due to the inability to £ind a
feasible starting point but good progress was made on problems
5, 6,14, 15,17, 18, 19, 24, 25, 26 and 27. Trouble was encoun-

tered in satisfying the equality constraints and in attaining
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sufficient inequality constraint satisfaction. On the addi-
tional test problems significant progress was recorded only
for problem 9.

Algorithms 28 and 29 were both second order methods and
although progress was made on most of the problems the
methods were both very slow and tended to terminate premature-
ly, probably due to the fact that numerically calculated
gradients were not accurate enough for the second order
methods. Another second order method, algorithm 34 solved
thirteen of the twenty-three rated test problems but suffered
from the same basic problems as algorithms 28 and 29. For
this reason methods requiring second derivatives could not
be recommended for general usage unless analytical deriva-
tives are available.

The remaining four algorithms performed significantly
better, solving at least seventeen of the rated problems.
Algorithm 27, solving seventeen of the rated problem set, em-
ploys the Davidon-Fletcher-Powell variable metric technique
to handle the unconstrained stages. No progress wés made on
problem 8, due to the fact that a feasible starting point
could not be located, but significant progress was made on
problems 5, 6, 7, 19 and 26. On three of these problems the
difficulty was in satisfying the equality constraints to the
required level. The fact that algorithm 27 was able to solve
problem 27 should be noted for this was the only interior pen-
' alty method to attain the solution to this forty-eight

variable problem. The relative speed of the method was
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also quite good. Fourteen of the seventeen problems solved
were solved within 100% of the average time for the total
error rating of 10~%. This ranked algorithm 27 in the same
group as several of the better exterior penalty functions in
most of the ratings. Performance on the additional test
problems was not wvery good, however, with significant pro-
gress only reported on problem 9.

Algorithm 31 also employed a variable metric technique
to handle the successive unconstrained stages and was able to
solve seventeen of the rated test problems. However, only
five of these problems were solved within 100% of the aver-
age time and only thirteen within 250% of the average time.
For this reason the algorithm was not ranked very high in any
of the average time ratings. For the problems not solved, no
progress was made on problem 27, a local minimum was found
for problem 4 and slow but significant progress was recorded
on problems 6, 12,17 and 26. Performance on the additional
test problems was better than for any other interior penalty
method with a solution recorded for both problems 21 and 22
and significant progress made on problem 9.

Algorithm 32 employs Powell's method of conjugate
directions for the unconstrained minimizations and was able
to solve eighteen of the rated problems. Progress was
again slow however, with only four problems being solved
within 100% of the average time. In the 250% rating fif-

teen problems were solved for € = 10-4, ranking the method
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with several of the better exterior penalty type methods.
No progress was recorded on problems 6 and 27, slight
progress was made on problem 26 and significant progress
was made on problems 15 and 20. Thus four of the five
problems where the solution was not reached involved
equality constraints. For the additional test problems
excellent progress was made on problem 9, and significant
progress was made on problems 21 and 22 due mainly to the
fact that the initially unsatisfied inequality constraints
were handled by the exterior penalty term.

Algorithm 33 employed the Broyden-Fletcher-Shanno var-
iable metric technique for the unconstrained stages and was
able to solve eighteen of the rated test problems. The pen-
alty function employed was the same as for algorithm 32
and the relative performance ratings are quite similar with
the exception being that algorithm 33 was generally faster
and ranked fairly well for both the 150% and 250% average
time ratings for e = 1074, The problems where difficulty
was encountered were problem 6 where no progress was recorded
and problems 11, 17, 20 and 27 where good progress was made.
Progress on the additional test set was recorded on problems
9, 13, 21 and 22.

As with the exterior penalty function algorithms the
basic difficulty with the interior penalty methods was
the inability to attain satisfactory constraint satisfaction.

The problem is only different in the fact that the constraints
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are being approached from the feasible region and the diffi-
culty is not in violated constraints but in not attaining
the required degree of accuracy in the objective function.
Also, as with the exterior penalty function algorithms,

most algorithms had great difficulty with equality con-
strained problems. An additional problem was encountered
on several of the highly constrained problems in simply
locating a feasible starting point. Timewise several

of the algorithms approached the speed of the better
exterior penalty methods but in general the interior penal-

ty methods were slower.

4.3 Factors Affecting the Results

The results presented in the last chapter clearly
indicate that the linearization type methods and in
particular the generalized reduced gradient algorithms are
significantly faster, and in most cases significantly more
robust than the penalty function methods. To ensure that
it was not the methodology of collecting the data which led
to this conclusion several additional factors will be con-
sidered. The selection of the system compiler will be
considered since it has recently been demonstrated that
the optimization level of a compiler may significantly
affect the relative speed of different algorithms [48].
Also the effects of the variation of the parameters on
. the total solution time will be considered. The input

parameters were not varied in order to produce any time
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savings and were only adjusted when trouble was encountered
during the solution procedure or when the final solution

was not acceptable. This adjustment of the input parameters
could have had some effect, however, on the reported solu-
tion times, and the sensitivity of the input parameters
about the final values for several problems will be con-
sidered for a sampling of the algorithms. Finally the
percentage of the total time spent within the various compu-
‘tational stages will be considered for both the linear approx-
imation and penalty function methods in an effort to deter-
mine why the linear approximation methods and in particular
the generalized reduced gradient algorithms have faster

convergence characteristics.

4.3.1 Compiler Selection
Several different compilers are available at the Purdue

University Computing Center. The FUN compiler which is a
merger between the original fortran compiler for the 6000
series machines written by CDC and an updated fortran
compiler from CDC was selected because it uses extensive
statement and code optimization. While requiring a large
amount of compilation time, the compiled binary instructions
will execute faster. The increased compilation time was not
important since each algorithm tested in the study was com-
piled and stored in binary form and only the subroutines

pertaining to the specific problem had to be compiled con-

tinually. To investigate relative time differences which
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could occur by using other compilers, four algorithms, a
generalized reduced gradient algorithm, an interior penalty'
function method, an exterior penalty function method and a
repetitive linear programming method were applied to four
problems on two other compilers. The other compilers
consisted of the FTN compiler which is an early version

of CDC's latest fortran compiler which produces a reasonably
efficient code and the MNF compiler which is a user oriented
compiler for the 6000 series machines which was developed

by a group of staff members at the University of Minnesota.
The ratio of the time required for the exterior penalty
method, the interior penalty method and the repetitive
linear programming method to the time required for the re-~
duced gradient algorithm for each of the compilers on

the four test problems is presented in Table 4.1. From

the table it is apparent that the ratios vary from compiler
to compiler but the amount of variation is quite small.

No trend is evident that the FUN compiler favored the reduced
gradient algorithms over the other methods, in fact in
several cases the time ratios increase by over 25% while

the time ratios never decrease by even 10% indicating that
by using either the FTN or MNF compilers might have actually
increased the relative performance of the reduced gradient

algorithms.
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Table 4.1 Ratios of Sclution Times for Algorithms 1,

9 and 27 to Algorithm 11 for Various Compilers.
Problem

Compiler 14 15 18 24
FUN 5.36 7.68 7.79 3.72
MNF 5.68 7.10 8.88 4.47
FTN 5.13 7.69 B.46 3.68

Algorithm 1
Problem

Compiler 14 15 18 24
FUN 4.01 10.42 1.59 13.23
MNF 4.05 10.13 1.70 14.58
FTN 5.13 13.99 2.13 12,11

Algorithm 27
Problem .

Compiler 14 15 18 24
FUN 717 1.32 .820 .654
MNP .810 l1.42 .997 +700
FTN .793 1.39 1.04 .644

Algorithm 9
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4,3.2 Variation of Parameters

To study the effects on the solution time due to
variations in the input parameters about their final values,
four test problems were selected from the study. On each of
these problems the input parameters for algorithms 1, 9,
10, 11, 15, 21, 27 and 31 were varied about their final
values. The final values are the values of the input
parameters used for the accepted run for each problem.
The problems were selected for their wide range in the
number of design variables and in the number and tfpe of
constraints. The selected problems include problem 14
which contains fifteen design variables, five functional
inequality constraints and fifteen variable bounds, problem
15 which contains sixteen design variables, eight equality
constraints and thirty-two variable bounds, problem 18
which contains seven design variables, fourteen functional
inequality constraints and fourteen variable bounds, and
problem 24 which contains four design variables, five
functional inequality constraints and three variable bounds.
The algorithms were selected so as to include several of the
better algorithms from each general classification.
Algorithms 9, 10 and 11 are linearization methods with
algorithm 9 representing the successive linear programming
technique and algorithms 10 and 11 representing the general-
ized reduced gradient methods. Algorithms 1, 15 and 21

" represent the exterior penalty function methods and
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algorithms 27 and 31 represent the interior penalty function
methods. All time data was recorded at a total relative

4

error, , of 10" °, unless it is stated otherwise.

“t
The input variables to algorithm 9 included the initial
step size, the final step size and the increment with
which to calculate the partial derivatives. The percentage
change in the solution time from the run accepted for the
final results is presented in Table 4.2 for algorithm 9
on the four test problems. A dashed iine for any of the
parameters indicates that this is the value used in the
final results. Of the parameters effecting the solution
time the initial step size was found to be very sensitive,
and small changes resulted in thirty to forty percent
deviations in the solution time. However, the trend was
extremely problem dependent with no common trend encountered.
It should be realized that by increasing or decreasing the
initial step size the path followed to the solution is
altered which can drastically effect the solution time.
The minimum step size was included in Table 4.2 to demon-
strate how the total solution time was effected. The
percentage change in the total solution time was used as a
comparison since altering the minimum step size would not
change the time to reach the required accuracy level of
}at = 10-4. It is apparent from Table 4.2 that as the minimum

step size decreases the total solution time increases

significantly, pointing out the fact that for general usage
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Table 4.2 Percentage Change in Solution Time for Algorithm
9 for Variations in the Input Parameters.
Initial Step Size
Problem .50 1.25 2,50 5.00 10.0
14 +15.4 - 3.77 — -31.5 -11.0
15 -16.3 -26.6 — -22.9 + 7.70
18 - 2,92 + 6.40 +18.42 +42.3 —_—
24 +30.4 — +23.4 +22.3 + 7.34
Minimum Step Size
Problem .001 .005 .01 .05 .10
14 +686 +129 +50.5 — No soln
15 + 45.4 + B8.4 —_— No soln No soln
18 +534 _— No soln No soln No soln
24 +218 _— - 1.06 -1.02 No soln
Linearization Increment
-5 -4 -3 -2 -1
Problem 10 10 10 10 10
14 -6.81 -7.25 —_— + .49 + .84
15 bt -42 - -06 — - 042 - -71
18 + .86 + .27 -— + .63 +2.40
24 - .80 ~2.60 —_— -1.86 No soln
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the minimum step size should be chosen with care and not
specified as an extremely small value. The final input
parameter for algorithm 9 was the size of the linearization
increment and was not found to cause any significant change
in the solution time. The general conclusion then is that
the times recorded for the test study could be altered by
30§ to 40% by variation of the input parameters, and the
variation could either increase or decrease the reported
solution times.

Table 4.3 presents the percentage change in the solu-
tion time for the reduced gradient algorithm 10 for changes
in the variable bound satisfaction criteria, the constraint
satisfaction criteria and the basis pivot criteria. All
other programming parameters were handled internally to the
algorithm. Results for problem 18 are not included in
Table 4.3 since no solution was recorded for this algorithm.
The general trend, as should be expected, is that as a higher
degree of bound or constraint satisfaction is desired a
resulting increase in the solution time is noted. The
ability to select the level of constraint satisfaction was
unique to the reduced gradient algorithms and made parameter
adjustment almost unnecessary. The other parameter, the
basis pivot criteria, determines the minimum value of a
pivot element in the generation of the basis inverse. The

suggested value of 10> was used throughout the study and
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Table 4.3 Percentage Change in Solution Time for Algorithm
10 for Variations in the Input Parameters.
; Bound Satisfaction Criteria

Problem 10” 10”6 107° 1074 1073
14 No soln +10.6 — =-20.2 -16.3
15 - . 36 - 020 — - -27 - -59

Constraint satisfaction Criteria

Problem 10”7 107¢ 1973 1074 10”3
14 No soln No soln —_— -6.,11 =-14.5
15 + .10 - .64 — - .10 + 1.93
24 -1.12 -1.60 — - .22 - .43

Basic Pivot Criteria

Problem 107 1074 1073 1072 1071
14 + .84 + .72 - +1.03 + .55
15 + .39 + .32 — - .21 + .43
24 - .45 +1.80 —_— +2.69 +15.34
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from Table 4.3 it can be seen that this parameter had little
effect on the solution time. The other reduced gradient al-
gorithm tested for input parameter variations was algorithm
1ll. For this algorithm the input parameters involved the
line search criteria, the constraint satisfaction criteria
and the forward difference increment for the calculation of
numerical derivatives. The results for variations in these
parameters are presented in Table 4.4. The line search
criteria was found to effect the solution time to some extent
but not by more than ten to fifteen percent over the range
tested. A value of 10“4 was successful on the large majority
of problems but occasionally the line search criteria was
decreased to achieve a higher level of accuracy in the solu-
tion. This was the case for problem 14. The constraint
satisfaction criteria followed the same trend as for algorithm
10 requiring a greater amcount of time for an increased
level of constraint satisfaction. The final input parameter,
the forward difference increment was found to produce only
insignificant differences in the solution times for all
reasonable values. Variation of the input parameters
for the reduced gradient algorithms point out an increase
in the amount of control the user has for a problem and
seldom was more than one run required for each problem
on these algorithms,

No standard set of input parameters was found to work

" well for the exterior penalty function methods. For
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Table 4.4 Percentage Change in Solution Time for Algorithm
11 for Variations in the Input Parameters.

Line Search Criteria

Problem| 1073 1074 1072 1076 10”7
14 +14.6 -10.2 -6.8 — -1.32
15 +12.6 — -9.6 +14.3 +4.9
24 -— -17 —— -201 + l70 +l-04

Constraint Satisfaction Criteria

Problem| 1073 1074 1073 1076 10”7
14 No soln No soln -2.30 -_— +11.8
15 -18.9 -20.6 -1.4 — - 1.2
18 No soln No soln ~4.8 — + 4.6

Forward Difference Increment

Problem| 1073 1074 10”3 1076 10”7
14 =-2.9 +1.1 -1.3 — -3.1
18 No soln 0.0 - .25 —_— +9.9
24 -2.3 -2.3 -1.2 — - .86
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algotihm 1 the required input parameters included the line
search criteria, the initial penalty parameter, and the for-
ward difference increment. No penalty multiplication fac-
tor for each stage was required because algorithm 1 employed
a biased penalty function which maintains a constant value
for the penalty parameter. The percentage change in the
solution time for variations in these parameters is presented
in Table 4.5. The method can be seen to be quite sensitive
to the line search criteria with wide variations possible

in the solution time. The penalty parameter determined to a
large extent whether a solution was found to the required
level of accuracy. This was due to the fact that to satisfy
the inequality constraints to the required level the penalty
parameter had to be increased and for several problems

the line search criteria had to be decreased to provide for
a more accurate solution. Generally this did not seriously
effect the solution time recorded but as can be seen from
Table 4.5 some large variations were possible for problem
15. Problem 18 was not included in the parameter study
since the penalty parameter had to be raised to an extremely
large value to achieve any solution and with such a large
penalty parameter the algorithm acted more as an interior
method than an exterior method. The forward difference
increment for this algorithm had to be maintained at a
relatively small value to insure a solution. Algorithm 15

" was unique in the sense that all parameters were set
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Table 4.5 Percentage Change in Solution Time for Algorithm
1l for Variations in the Input Parameters.
Line Search Criteria
-3 Y -5 -6 -7
Problem 10 10 10 10 10
14 No soln =-22.9 +109 — + 7.80
15 -43.4 -28.4 + 5.70 —_— +12.60
24 No soln + 1.29 —_ +11.2 +20.3
Penalty Parameter
Problem 25 50 100 200
15 No soln +105 — - 9.30
24 No soln + 7.3 — - 2.58
Forward Difference Increment
Problem 1073 1074 1072 10”6 10”7
14 No soln No soln No soln +27.3 —
24 No soln -2.10 -1.72 - 6.00 —
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internally, and for the initial run the user did not have
to select any values. The initial penalty parameter is
calculated so that at the first stage the penalty function
is appreciably more sensitive to the objective function
than the constraints. The internally selected parameters
worked very well for the problems in the test set and rarely
did any parameter have to be changed. To determine how
sensitive the penalty function parameter, the penalty
multiplication at each stage and the forward difference
increment were to variations in the parameters from the
values selected internally a parameter study was conducted.
The results appear in Table 4.6. Potential time savings
from decreasing the number of stages required by increasing
the initial penalty coefficient or the penalty multiplication
at each stage were canceled out by an increase in the time
required per stage. In no case did the solution time
fluctuate by more than twenty percent, so the internal
selection of parameters proved to be quite sufficient.

The success of the selection of internal parametesr is
probably due to the fact that the constraints are scaled

at the beginning of each stage to reduce the domination of
the penalty function by any one constraint and allow for a
uniform set of program parameters to be selected. The same
three parameters, the initial penalty coefficient, the
penalty multiplication factor at each stage and the forward

difference increment were required for algorithm 21. The
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Table 4.6 Percentage Change in Solution Time for Algorithm
15 for Variations in the Input Parameters.
Penalty Function Parameter (FP)
Problem %/FP %/FP $/FP $/FP
15 —/10° % -4.67/1073  -3.70/10"2 +8.88/10 1
18 —/.15 +7.27/1.0 +14.7 /10.0 +18.7 /20.
24 —/10"6 -8.40/10"3% -6.72/10-3 -6.70/10"
Penalty Multiplication at Each Stage
Problem 8 15 30 45
15 — -17.8 No soln No soln
18 —— - 082 —8- 36 -18-9
24 f— - 5090 -1-03 - 2-24
Forwerd Difference Increment
Problem 10”10 10”7 1073
15 —_— + .44 + 2.36
18 —_— + .07 +12.10
24 e +6.19 No soln
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percentage changelin the solution time for variation in these
parameters is presented in Table 4.7. Again no variations of
over 25 percent were noted for changes in the initial
penalty coefficient or the penalty multiplication factor,

but as for algorithm 1, both parameters had a significant
effect on whether the solution was located to the sufficient
degree of accuracy. This again was due to the fact that a
combination of the initial penalty coefficient and the
multiplication factor had to be determined which would
achieve constraint satisfaction to the required level of
accuracy. This adjustment procedure usually involved several
trial runs. The forward difference increment was again
required to be fairly small, another common factor for the
exterior penalty function methods.

For the interior penalty function methods the suggested
input parameters had significantly more success than for the
exterior penalty function methods. This was due to the
fact that the inequality constraints were approached from
the feasible region and no parameter adjustment was
required because of slightly wviolated inequality con-
straints at the solution. Algorithm 27 was the interior
counterpart to algorithm 21. The same input parameters
were required with the exception that a the penalty cé—
efficient multiplication factor is required to be less than
- one which actually produces a penalty coefficient reduction

factor. The percentage change in the solution time for
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Table 4.7 Percentage Change in Solution Time for Algorithm
21 for Variations in the Input Parameters.

Penalty Function Parameter

Problem .01 .50 1.0 10.0 50.0 100.0
14 o soln No soln -10.5 =~ 1.56 —_— -20.3
15 +5.,27 —_ -9.50 -7.32 No soln No soln
24 [o] soln No soln —_— +28.9 +19.1 +21.4

Penalty Multiplication at Each Stage

Problem 10 20 50 100 200
14 +1.80 No soln + 7.45 —_— -11.0
15 No soln No soln +24.4 —_— No soln
24 No soln No soln No soln — -13.3

Forward Difference Increment

Problem 10”4 10”6 1078 10710
14 No soln -29.4 -9.10 ——
15 No soln No soln No soln ———

24 No soln No soln +7.10
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variations in the input parameters is presented in Table
4.8. Variations of thirty to forty percent are possible

by adjusting the initial penalty coefficient or the
multiplication factor but these large variations represent
an increase in the solution time not a decrease. Only

time savings of up to fifteen percent were noted by
parameter variations which would indicate that the standard
input parameters are quite good for this algorithm at least
on these test problems. The forward difference increment

7 to allow

was again required to be on the order of 10
for an efficient solution. For algorithm 31 the same three
parameters were required as for algorithm 27 plus an addi-
tional parameter regarding the subproblem convergence
criteria. The effect on the solution time resulting from
variations in these parameters is presented in Table 4.9.
The fesults are much the same as for algorithm 27 with

large increases in solution times resulting for most com~
binations, althoﬁéh for problem 24 a possible forty percent
reduction in solution time did result for a reduction in the
initial penalty coefficient. The overall results from

Table 4.9 indicate that the suggested parameters work

well for this algorithm also. The subproblem convergence
criteria was not found to significantly effect the solution
time and the forward difference increment was fairly in-

sensitive over the range from 10~ % to 1077.
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Table 4.8 Percentage Change in Solution Time for Algorithm
27 for Variations in the Input Parameters.
Penalty Function Parameter
Problem .005 .05 «50 5.00
14 - 4.70 + 6.80 — +17.8
18 -11.7 -15.0 _ +30.0
24 - 4.40 - 7.50 —_— +36.8
Penalty Multiplication Factor
Problem .01 .05 .10 .25 .50
18 + 7.02 +10.30 —_— - 3.40 +30.3
24 + .06 - 4,50 _— +24.2 +44.0
Forward Difference Increment
Problem 10”7 107> 1073
14 — +31.7 No soln
18 — +29.0 No soln
24 —_— +22.1 No soln




Table 4.9

Percentage Change in Solution Time for Algorithm

31 for Variations in the Input Parameters.

Penalty Function Parameter

Problem .01 .10 1.9 10.0
14 +484 +95.3 e =15.5
18 + 22.7 + 1.94 — +36.2

Penalty Reduction Factor

Problem 8 12 16 20 24
14 - 4.76 -2.86 —_— - .30 +1.02
24 +26.24 +5.02 —_— -3.78 + .07

Subproblem Convergence Criteria

Problem 10”7 1078 1073 1074
14 +.08 —_ + .41 - .53
18 +.08 — + .12 0.0
24 +.04 — -.02 + .50

Forward Difference Increment

Problem 10”7 1070 10°° 1074
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The frequently significant changes in the solution
times which were observed for variations in the input
parameters demonstrate the importance these parameters have
in the solution procedure. If the results were based
on the best time for each algorithm for each problem time
savings of from twenty to thirty percent could be expected
from the times reported in the study. However, this type of
time data would not be at all representative of what the
average user might expect, and even if the best times were
used for the relative ratings there is no evidence that the
penalty function algorithms would even approach the level of
pefformance demonstrated by the generalized reduced gradient
‘algorithms. So the major result of the parameter study was
to demonstrate that the generalized reduced gradient
algorithms and the interior penalty function methods seem
to perform well with the suggested input parameter values,
while the exterior penalty methods generally require some
manipulation of the initial penalty coefficient or the penalty

multiplication factor at each stage in general usage.

4.3.3 Time Study for Computational Phases
During the solution process for each algorithm several
distinct computational stages are employed. If improvement
of an algorithm is to be attempted, it would be most promis-
ing to concentrate on the computational stage from which
the greatest savings in time could result. Also by comparing

the time spent in the various computational stages for both
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the linearization and the penalty function algorithms an
indication of where the linearization methods acﬁieve their
savings might result. To generate this type of informaﬁion
the basic computational phases were determined for the
algorithms which performed well in the study and timing
routines were inserted in these algorithms to find out
what portion of the total solution time is spent in each
phase. The algorithms were then run on the four problems
which were used in the parameter study.

For algorithm 9, a repetitive linear programming method,
the only major computational phases were the generation of
the linear programming problems, the solution of the linear
programming problemsg, and the adjustment of the variables
by Newton's method which is relevant only for problems
involving equality constraints. The total time required
to solve each of the four test problems and the percentage
of the total time spent in each computational phase for
algorithm 9 is presented in Table 4.10. The results, as
might be expected are highly problem dependent, but the
interesting fact is that the percentage of the total time
spent in generating the linear programming problems is
greater than or equal to the time spent in solving the
linear programming problems except for problem 24 which
contained only four variables and five functional constraints.
If the solution of the linear programming problems had

" required the large majority of the solution time the number



Table 4.10 Percentage of Time Spent in Various Phases of the Solution Procedure
for Algorithm 9.

Problem Percentage of Total Time

Phase 14 15 18 24
Generating L.P. Problems 58.2 86.7 48.7 33.4
Solution of L.P. Problems 39.4 9.1 47.9 64.9
Newton's Method 0.0 2.5 0.0 0.0
Total Time (sec) 5.673 13,248 3.451 .400

12T
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of constraints would probably be the important factor in the
total time required for a repetitive linear programming
algorithm since the number of constraints is the determin-
ing factor in how long a linear programming problem solution
requires [49]. However, since the generation of the linear
programming problems requires the calculation of the partial
derivatives of the objective function and the constraints
with respect to the design variables the product of the
number of design variables and the constraints would
become the deciding factor to the solution time required.
For a reduced gradient algorithm there are many major
computational phases involved in the solution process.
These phases include the generation of the partial deriva-
tives, matrix inversion and basis changing, the calculation
of the reduced gradient, the calculation of the search
direction and the time spent in the line search. Of the
time spent in the line search a certain portion is spent in
Newton's method to maintain constraint satisfaction. Many
of these phases could be considered as part of the total
generation of the search direction but each phase was
accounted for separately to provide for the best division
of time. The total time required and the percentage of
time spent in each of these computational phases for
algorithms 10 amd 11 are presented in Table 4.11. The major
portion of the time spent for both of the algorithms is in

the generation of the partial derivatives, the matrix



Table 4.11 Percentage of Time Spent in Various Phases of the Solution Procedure
for Algorithms 10 and 1l.
Percentage of Total Time
Problem 14 15 18 24
Phase/Algorithm 10 11 10 11 10 11 10 11
Generating Constraint
Partials 34.1 30.5 61.4 31.7 21.4 8.3 15.7 11.8
Matrix Inversion and
Basis Changing 13.2 4.0 10.3 6.6 20.7 45.3 13.9 10.8
Calculation of
Reduced Gradient 2.1 12.9 1.8 35.4 2.9 2.7 2.4 3.0
Calculation of
Search Direction 4.4 1.6 2.6 1.4 4.5 1.4 3.1 1.4
Line Search 46.1 42.7 23.9 18.9 50.5 29.6 64.4 71.3
Percentage of
Line Search Time
Spent in Newtons 8l.4 79.3 [71.0 30.8 50.6 83.1 75.3 80.5
Method
Total Time (sec) 4.471 8.101| 4.997 8.943 .319* 3.616 .445 .575

*Very little progress

1 X"
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inversion and basis changing and in the line search. Algo-
rithm 11 also spent a significant portion of time in the cal-
culation of the reduced gradient for problems 14 and 15. An
interesting point to note is that the majority of the time
spent in the line search was actually used in the satisfac-
tion of the constraints by Newton's method. Again the per-
centage of time spent in each phase of the algorithm was
highly problem dependent and also varied between the two re-
duced gradient algorithms. This points out the fact that the
computational procedures employed to execute each phase can
effect the relative solution times of two algorithms which
are theoretically almost identical.

For both the interior and exterior penalty function al-
gorithms the solution procedure may be divided into two gen-
eral phases. These phases are the generation of the search
direction and the line search. Other phases such as the up-
dating of the penalty parameters or for several algorithms
the extrapolation of successive solutions were present but
the time spent in these phases did not account for any sig-
nificant percentage of the total solution time. Table 4.12
presents the total time and the percentage of time spent in
these computational phases for the exterior penalty function
methods 1, 15 and 21, and Table 4.13 presents the same in-
formation for the interior penalty function methods 27 and
31. A basic trend for both the interior and exterior penalty
function algorithms is that as the number of variables in-

creased the time spent in generating the search directions



Table 4.12 Percentage of Time Spent in Various Phases of the Solution Procedure for Algorithms 1,

15 and 21.
—Percentage of Total Tine
Problem 14 15 18 24
Phase/Algorithm{ 1 15 21 1 15 22 1 15 22 1 15 22
— s == —
Calculation
of Search 67.7 87.0 52.9 { 75.0 79.4 73.8 | 37.9 71.0 42.3 [33.8 54.0 33.5
Direction

Line Search 29.6 11.1 46.8 | 24.2 20.4 22.1 | 49.3 28.8 56.1 ([60.2 42.6 63.7

Total Time

(sec) 40.08 .270* 31.88| 62.59 137.7 62.26| 32.0 10.99 7.05F| 2.33 3.218 1.263

*No progress
"'Significant progress

TN



Table 4.13 Percentage of Time Spent in Various Phases of the Solution Procedure for
Algorithms 27 and 31.
Percentage of Total Time
Problem 14 15 18 24
Phase/Algorithm| 27 31 27 31 27 31 27 31
Calculation
of Search 50.9 54.6 65.2 67.0| 43.1 36.5 | 10.2 27.9
Direction
Line Search 47.5 43.9 34.1 31.4] 55.9 61.5 87.2 67.5
Total Time
(sec) 29.85 47.73 93.57% 200.2 5.95 19.41 9.320 11.731

*significant progress

9¢T
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became the major element of the total solution time. The
calculation of the search direction is largely composed of
the time to generate the partial derivatives of the penalty
function with respect to the design variables so no major
time savings could be expected for this phase in future
algorithm development. Time savings for the penalty func-
tion algorithms would have to be achieved by reducing the
time spent in the line search, and the time savings would
have to be extremely large to have any significant effect on
the total solution time. The relatively small solution times
for the reduced gradient algorithms as compared to the pen-
alty function algorithms must then be related to the rate of
overall convergence rather than to a significant time dif-
ference in any computation phase of the algorithms. There is
apparently a significant time savings inherent in handling
the constraints directly. If all the phases but the time
spent in the line search are grouped to form the time to gen-
erate the search direction for the réduced gradient algorithms,
which is not precisely the case since the inverse of the
basis i3 also used in the line search in Newton's method, the
percentage of the total time spent in each phase is not that
different from the penalty function algorithms. The major
difference is that for the reduced gradient only a small por-
tion of the line search time is spent in the actual line
searching since the majority of the line search time is con-
sumed by Newton's method. A comparison between the repeti-

tive linear programming algorithm and the penalty function
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algorithms is difficult, but the percentage of the total
time spent generating the problem for the repetitive linear
programming algorithm is roughly equivalent to the time

spent in generating the search directions for the penalty

function algorithms.
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CHAPTER 5 AN ALTERNATE APPROACH OF COMPARISON

5.1 Introduction

The results of the comparative study so far have been .
based on the number of problems solved within a reasonable
amount of computational time. The problems in the test
set were intentionally selected to be widely varied in
nature since the performance on the test set was to indi-
cate the performance one would expect in general usage. It
would still be beneficial, however, to have additional
information pertaining to the performance of some of the
better algorithms on a specific type of problem. This type
of information cannot be generated from the results on the
selected test problems because very few of the test problems
were closely enough related to make much of a performance
judgement on a specific type of problem. To obtain this
information, a different approach was taken. The performance
of the algorithms was rated on the basis of how the solution
time varied as a function of the type of problem considered.
A problem containing five variables and ten inequality
constraints with a quadratic objective function and con-
straints was selected as the standard problem. This standard
problem was then altered by changing one problem factor such

as the number of variables, the number of inequality
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constraints, the number of equality constraints or the de-

gree of nonlinearity to form another problem élass. The

.solution times reported for each problem class are the

average time for each algorithm on a set of ten randomly

generated problems within that problem class to an accuracy
4

of e, = 10°°,

5.2 Problem Generation

It would be desirable to base the problems on some
practical engineering applications, but to find ten prob-
lems with the same number of variables, constraints and
general degree of nonlinearity is not at all an easy task.
If the additional restriction is imposed that the distance
from the starting vector to the solution vector remains
constant, the task of gathering the problems becomes even
more difficult. For this reason the problems were selected
to have a convenient mathematical form. The selection of
a quadratic objective function and quadratic constraints
for the standard problem has several distinct advantages.
First of all, all of the algorithms tested were able to solve
this type of problem with the recommended values for the
input parameters so only one run per problem was required.
Also the degree of nonlinearity can be raised simply by
considering higher order terms such as cubic or quartic
terms. In addition the quadratic functions may easily

be selected so that the constrained region is a convex set,
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which would guarantee the presence of only one optimal
solution.

The test problems were generated following the
procedure of Rosen and Suzuki [50]. For example consider
the standard test problems consisting of five variables
and ten constraints. The quadratic form for the objective

function may be expressed as
£(x) = X "QX +aXk (5.1)
and for each constraint as
g; K= XQX +bX +¢c; 20; i=1,2,...,10 (5.2)

For these expressions the Qo and Qi are randomly generated
N by N matrices, or five by five matrices for this case.

Q_ is forced to be positive definite to guarantee unimodal-

o
ity and the Q, are forced to be negative definite to guar-

antee a convex feasible region. The a, bi and cs are all
column vectors containing N elements. Not only are the

Q matrices selected but the bi vectors, and the Lagrange
multipliers are randomly generated, and the solution vector
is also selected. The Lagrange multipliers are either set
to zero if a constraint is not to be active at the solution
or to a random number between .5 and 10. So that the
problem is not unconstrained or overconstrained the number
of constraints allowed to be active at the sclution was

also selected as a random integer between one and N-1l.
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Now the a; and cy may be determined by the conditions re-
quired to make the selected optimal vector a Kuhn Tucker
point. Thus a sequence of ten problems which have a common
number of variables and constraints, a quadratic objective
function and constraints, a common starting vector and
solution vector, and a convex feasible set with a unimodal
function may be easily generated.

The procedure to guarantee that Q0 is positive defin-
ite and the Q; were negative definite was not very compli-
cated either. The Q matrices were generated by submatrices
with an additional row and column added to each submatrix
to form the next. In this fashion a one by one matrix
could be generated randomly to form a positive definite
matrix. For a one by one matrix all that is required is
that the element be positive. Next a randomly generated
row and column are added and continually regenerated until
the determinant of the two by two matrix is positive. By
continuing the procedure a row and column at a time with
positive elemenﬁs in all diagonal locations a positive
definite matrix can be built up gradually. In this fashion
only one row and column need be regenerated for each
submatrix which was far more efficient than regenerating
an entire N by N matrix until a positive definite matrix
resulted, an occurrence which may never occur with randomly
generated coefficients. The procedure for generating

" negative definite matrices was built on the same princple.
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The procedure for the problem generétion may be easily
extended to generate variations of the standard problem.
. An increase in the number of inequality constraints simply
requires the generation of additional Qi matrices, and an
increase in the number of variables only increases the size
of the matrices. The basic procedure for the addition of
equality constraints remains unchanged with the exception
that the lagrange multipliers for the equality constraints
may be positive or negative. However the addition of
nonlinear equality constraints introduces the possibility
of local minima. This problem was handled by including
only those problems generated where all of the algorithms
reached the selected optimal vector. For the increase
in nonlinearity additional higher order terms were added
to the basic quadratic form. No change was required for
the problem generation with the exception of the check
for positive or negative definiteness. The matrix of
second derivatives no longer consisted of constant ele-
ments and computationally there was no easy way of guar-
anteeing that the functions were postive or negative
definite. To circumvent this problem, the Q matrices
were generated as for the quadratic functions and the
additional terms were then added without an additional
check as to the positive or negative definiteness of
the matrices. This introduced the possibility of pro-

ducing a nonconvex feasible region but as for the addition
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of equality constraints the problems where alternate
optimal solutions were found were not included.

The starting vector for all problems was the origin
and the solution for all of the five variable problems
was x; = 2.0. As the number of variables increased, however,
the solution was adjusted so that the distance from the
origin to the solution vector was the same as for the five
variable problem. The performance of the algorithms will
now be considered for each variation of fhe standard

problem.

5.3 Increase in Design Variables

An increase in the number of design variables was
by far the most critical factor in increasing the solution
time for all of the algorithms. The average solution times
for the seven selected algorithms on the standard test prob-
lem set along with the average solution times for the 10
and 15 variable problem sets are presented in Table 5.1.
Also included in Table 5.1 is the percentage increase
in solution time over the standard problem set for the ten
and fifteen variable problem sets. For the five, ten and
fifteen variable problem sets the linear approximation
methods were significantly faster than the penalty function
methods, with the reduced gradient algorithms 10 and 11
producing solution times on the order of one half to one
third the time required by the penalty function algorithms.

The solution times for the repetitive linear programming
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Table 5.1 Solution Time and Percentage Increase in Solu-
tion Time for an Increase in the Number of
Design Variables.
Number of Variables
Algorithm 5 10 15
time time/% increase time/% increase
1 6.306 23.482/272.4 70.288/1014.6
9 4,153 16.356/293.8 42.865/932.1
10 2.171 10.217/307.6 23.307/973.6
11 3.491 15.025/330.4 26.318/653.9
15 9.081 42.248/365.2 132.320/1357.6
21 6.639 33.637/406.7 75.191/1032.6
31 9.050 32.650/260.8 128.086/1315.3
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algorithm, method 9, ﬁere slightly slower than those produced
by the reduced gradient algorithms, especially on the problems
involving fifteen desigh variables, but again produced con-
siderable time savings over the majority of the penalty func-
tion algorithms. These results are in direct agreement with
the results previously generated from the comparative study.
An interesting point is that the percentage increase in
time was not that different for the various classes of algo-
rithmg. The increase in the number of design variables from
five to ten produced a percentage increase of slightly under
300% for algorithms, 9 and 31, and an increase of from 330
to slightly over 400% for the other algorithms. The increase
to fifteen design variables generally produced a percentage
increase in solution time of approximately 1000% over the five
variable problem set. The exception was algorithm 11 which
only produced an increase of approximately 650%. This dras-
tic increase in the solution time for an increase in the num-
ber of variables indicates that all of the nonlinear program-
ming algorithms are extremely sensitive to the number of de-
sign variables and as the number of design variables is in-
creased the computational time saved by applying the reduced
gradient algorithms over the penalty function algorithms be-
comes increasingly significant. This can be seen clearly if
the results are extrapolated to higher values of N. For an
increase to 100 design variables, the extrapolated time for
the penalty function algorithms ranges from 3000 to 13,000

seconds on the CDC 6500 while the generalized reduced
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gradient algorithms have extrapolated solution times of under

1000 seconds.

5.4 Increase in Inequality Constraints

Figure 5.2 presents the solution time and the percentage
increase in solution time as the number of inequality con-
straints was raised from ten to fifteen to twenty. The num-
" ber of constraints allowed to be active at the solution was
held between one and four as for the standard problem to pre-
vent an overconstrained solution. The effect on the solution
time for an increase in the number of inequality constraints
was not as drastic as for an increase in the number of vari-
ables. Again the linear approximation algorithms only re-
gquired one half to one third the amount of computational time
the penalty function algorithms required for all cases. For
the penalty function algorithms doubling the number of con-
straints produced an increase of approximately one hundred
percent in the solution time, while the linear approximation
algorithms were slightly less effected with the exception of
algorithm 11 which demonstrated the largest percentage in-
crease in solution time out of all of the algorithms. Upon
investigation it was found that algorithm 11 employed Newton's
method to adjust all of the slack variables instead of just
the slack variables for the tight constraints. This resulted
in increasing the amount of computational effort needlessly
as the number of constraints increased, due to the increased

size of the matrix to be inverted. Another interesting point

is that the method of repetitive linear programming was the
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Solution Time and Percentage Increase in
Sclution Time for an Increase in the Number
of Inequality Constraints.
Number of Constraints
Algorithm 10 15 20
time time/% increase time/% increase
1 6.306 8.938/41.7 11.304/79.3
9 4.153 4,750/14.4 6.602/59.0
10 2.171 3.475/60.1 3.737/72.1
11 3.491 6.716/92.4 8.404/140.7
15 9.081 13.523/48.9 17.258/90.0
21 6.639 12.270/84.8 15.616/135.2
31 9.050 11.417/26.2 17.773/96.4
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least sensitive algorithm to an increase in the humber of
inequality constraints. This again points out the fact
that the solution time required for this algorithm is de-
pendent upon the number of variables to a greater extent
than the number of constraints even though the solution
time required for a linear programming problem is known to
increase as a function of the number of constraints. This
result agrees with the results from the timing study where
it was demonstrated that the solution of the linear
programming problems was not as time consuming as the

generation of the linear programming problems.

5.5 Addition of Equality Constraints

The equality constraints were introduced to the prob-
lems by removing one inequality constraint for each
equality constraint added so that the total number of
constraints remained constant. Also for each equality
constraint added the maximum number of inequality constraints
allowed to be active at the solution was reduced by one.
The solution times and the percentage increase in solution
time for the addition of one and three equality constraints
is presented in Table 5.3. The effect on the solution
times were not that evident with the exception of algorithms
9 and 31. Algorithm 9, the repetitive linear programming
algorithm was able to handle the addition of a single
equality constraint but failed to solve the problems

involving three equality constraints due to difficulty with
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Table 5.3 Solution Time and Percentage Increase in
Solution Time for an Increase in the Number
of Equality Constraints.

Number of Equality Constraints

Algorithm 0 1 3

time time/% increase time/% increase
1 6.306 6.892/9.3 7.278/15.4
9 4,153 5.382/29.6 *
10 2.171 2.976/37.1 2.749/26.6
11 3.491 6.234/78.6 3.405/-2.5
15 9.081 10.108/11.3 9.956/9.6
21 6.639 8.504/28.1 10.320/55.4
31 9.050 18.380/103.1 27.156/200.2

*Could not locate a feasible starting point.
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Newton's method in finding a feasible starting point.
Algorithm 31, an interior penalty function algorithm,
demonstrated a significant increase in solution time for
the addition of equality constraints with a 100% increase
for the addition of‘one equality constraint and a 200%
increase for three equality constraints.

The effect on the exterior penalty function algorithms
was not as great as might be expected, but the difficulty
noted on the test problems from the comparative study was
not an increase in solut;on time, but a failure to satis-
fy the equality constraints to the required level. This
difficulty was not noticed on the problems generated for
this test.

Once again the reduced gradient algorithms produced
the best solution times although the time savings for the
addition of a single equality constraint were not that
great for algorithm 11. The interesting point is that the
increase to three equality constraints produced a decrease in
solution time from the problems involving one equality
constraint which demonstrates another advantage of the
reduced gradient algorithms over the penalty function algor-
ithms. The increase in solution time for the reduced
gradient algorithms on the equality constrained problems
was due to the time spent in finding a feasible starting
point for there is essentially no difference in the way an
equality constraint is handled by these algorithms than a

tight inequality constraint.
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5.6 Increase in Nonlinearity

The degree of nonlinearity is hard term to quantify.
Comparing a problem consisting of polynomial terms to another
involving trigonometric or exponential terms as to the de-
gree of nonlinearity is not an easy task. It is possible,
however, to gain an understanding of the effects of in-
creasing nonlinearity by concentrating on a single problem
form. .The standard problem set involves problems constructed
with the most nonlinear term being guadratic. By adding
cubic and quartic terms to these problems, the degree of
nonlinearity is increased, and it was in this manner that
the problems were constructed.

The effects on the solution time for the addition of
the cubic terms were not dramatic for any of the algorithms,
as can be seen from Table 5.4 where the solution times and
percentage increase over the standard problem solution time
are presented. The only algorithm affected to any major
extent by the adéition of cubic terms was algorithm
11 for which the solution time increased 64% over the stand-
ard problem. It should be noted, however, that the total |
solution time for algorithm 11, a reduced gradient algorithm,
was still well below the times recorded by the penalty
‘function algorithms. The addition of quartic terms again
affected algorithm 11 but also the time for algorithm 9,
the repetitive linear programming algorithm increased

-dramatically. This increase in time would be expected
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Table 5.4 Solution Time and Percentage Increase in
Solution Time for an Increase in Problem
Nonlinearity.

Highest Nonlinear Term -
Algorithm | QUADRATIC CUBIC QUARTIC
time time/% increase time/% increase
1 6.306 8.263/31.0 10.680/69.4
9 4,153 5.324/28.2 9.386/126.0
10 2,171 2.306/6.2 2.890/33.1
11 3.491 5.735/64.3 7.247/107.6
15 9.081 9.787/28.1 11.023/66.7
21 6.639 8.507/7.8 11.069/21.4
31 9.050 10.393/14.8 12.453/37.6




144

for a method based on linear programming solutions, but

the effect on algorithm 11 is more difficult to'explain.

It is true that the reduced gradient algorithms are linear
approximation methods, but the increase in nonlinearity did
not effect algorithm 10, another reduced gradient algorithm
to any significant extent. A possible explanation for the
difference is the type of unconstrained search directions
generated by the algorithms. All of the penalty function
algorithms and also algorithm 10 employed a variable metric
technique to generate the search directions and were not
significantly effected by the increase in nonlinearity.
Algorithm 11, on the other hand, employed the conjugate
gradient technique of Fletcher-Reeves and this technique,
while producing a smaller percentage increase in solution
time for an increase in the number of design variables, did
show a significant increase in solution time as the non-

linearity of the problem increased.

5.7 Discussion

The major point to note from the results presented in
this chapter is that they are consistent with the previously
presented results. The linear approximation methods and in
particular the generalized reduced gradient algorithms
are significantly faster than the penalty function algorithms.
The time required by the reduced gradient algorithms was
consistently one half to one-third the time required by the

penalty function algorithms.
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As far as the problem factors are concerned, all of
the algorithms demonstrated the largest increase in solu-
tion time as the number of variables was increased. In-
creasing the number of inequality constraints, the addition
of equality constraints or increasing the level of non-
linearity generally had a minor effect on the solution
time required by the algorithms as compared to an increase

in the number of design variables.
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CHAPTER 6 COMBINATION OF ALGORITHMS

6.1 Introduction

The ability to handle constraints directly has been
demonstrated to be more efficient than the penalty function
approach in all of the results presented in the previous
chapters. This brings up the question of whether the penél-
ty function algorithms can be modified to produce the same
computational time savings. The penalty function algorithms
had difficulty in obtaining constraint satisfaction on prob-
lems where several constraints were active at the solution.
To solve this type of problem the input parameters had to be
selected carefully so that each stage was solved accurately
and so the penalty function contours at successive stages
were not altered so drastically that progress to the optimal
solution was impossible at the final stages. This is a very
time consuming process, but if the problem is considered
from another approach several improvements can be made.
Consider a method consisting of two distinct phases. The
first phase is to locate the vicinity of the solution
and to identify the active constraint set. The second
phase is to satisfy any violated constraints and to locate

the optimum to the desired accuracy. The exterior penalty
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function algorithms are a natural choice for the first
phase. The convergence criteria for each unconstrained
stage may be very loose and the increase in the penalty
par&meter could also be fairly large. This would result
in the location of the vicinity of the minimum in a few
stages each of which requiring a small amount of time due
to the large value of the convergence criteria at each
stage. The active constraint set would be easy to obtain
since after several “loose" penalty stages the active
constraints will generally be slightly to moderately
violated for an exterior penalty algorithm. The second
phase would then involve locating the feasible optimal
point. The logic of this phase could be very similar to
that of a reduced gradient algorithm only now the selection
of the decision and state variables may be made with a good
idea of the active constraint set. Another approach would
be to initiate a repetitive linear programming algorithm
at this point since this type of algorithm has demonstrated
extremely good performance once the constrained region has
been located. Both of these approaches will be considered
by combinations of existing algorithms. The biased penalty
function algorithm, method 1, will first be coupled with a
reduced gradient algorithm, method 11, and then with a
repetitive linear programming algorithm, method 9. The
improvement over the normal penalty function approach as
well as the relative ranking with the algorithms tested

in the comparative study will be considered.
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6.2 Combination of Biased Penalty and Reduced

Gradient Algorithms

The biased penalty function method was selected for
phase one for several reasons. First of all the method is
designed to minimize the distortions in the penalty function
contours which allows for several penalty stages to be
solved very rapidly. Secondly the method was extremely
adept at locating the vicinity of the solution after the
first few stages, thus the transfer to the phase two method
can be made quickly. Also only the initial penalty multipli-
cation parameter had to be selected which reduced the required
number of input parameters.

Algorithm 11 was selected for the second phase solu-
tion since the input format was very similar to the phase
one method, algorithm 1. This reduced the effort in the
implementation of a program to interface the two algorithms.
The interface program initially sets up the required
starting information for algorithm 1. The only changes
made from a normal run for the algorithm were that the
line search criteria was set to a value of 10-2, the
overall convergence criteria was set to a value of 10_3,
and the initial penalty parameter was set to a value of 10.
The problem was then solved by algorithm 1 and the resulting
solution was modified to be input to algorithm 1l1l. This
modification basically involved the addition of artificial
variables to satisfy the violated constraints and the

reordering of the design variables to insure that the
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artificial variables were contained in the initial decision
variable set. The artificial variable approach was used
since the search for a feasible point would generally re-
main in the vicinity located by the phase one algorithm.
Using this procedure the artificial variables are set to
the exact constraint violations and added to the constraints
to artificially satisfy the violated constraints. An
additional term is then appended to the objective function
which essentially penalizes the objective function for non-
zero values of these artificial variables. The effect of
this procedure is to rapidly reduce the artificial vari-
ables in the initial solution stages to generate a feasible
point. The normal approach for location of a featible
starting point for algorithm 11 was to simply minimize the
sum of the violated constraints. This type of procedure
was not appropriate for the combined solution procedure
because in satisfying the constraints in this manner no
attempt is made to stay in the vicinity which the phase
ane algorithm located, thus essentially wasting much of the
information supplied by phase one.

The combination of these two algorithms was applied
to the test problem set from the comparative study and the
results were quite good. First of all the combined method
solved all twenty-three of the rated test problem set,
which neither algorithm 1 or 11 was able to do alone. This
was because the combination of the two methods complimented

one another nicely. Algorithm 1 was generally able to
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locate the vicinity of the solution but had trouble satisfy-
ing the constraints and especially the equality constraints.
Algorithm 11l occasionally had difficulty in moving through
the design space as on problem 12 and had a tendency to term-
inate at local minima near the starting point for many of the
additional problems in the test set. The method did perform
well by maintaining constraint satisfaction and in locating
the optimum to a very accurate degree. Thus some of the
weaknesses one method had alone were compensated for by the
combination with the other method.

The recorded solution times were very fast for the com-
bined methods. The percentage decrease in solution time for
the combined algorithms over the normal solution times for
algorithms 1 and 11 on the rated test problem set is presented
in Table 6.1.

The percentage reduction for the combined methods over
the solution times reported for algorithm 1 is quite large for
all of the problems in the study with the exception of prob-
lems 5 and 12 which had unconstrained solutions. For prob-
lems with unconstrained solutions no improvement would be
expected, but a slight time savings resulted on these problems
due to the loose line search in algorithm 1 at the initial
stages. Time savings on these problems are not that impor-
tant to the overall performance of the combined algorithms
since these problems required only a small amount of compu-

tational time for either of the algorithms alone. The in-

teresting point is that as the problems become more difficult
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Table 6.1 Pefcentage Improvement in Solution Time for the
Biased Penalty-Reduced Gradient Combined
Algorithm over Algorithms 1 and 1l.

Problem Percentage Improvement
over Algorithm 1 over Algorithm 11

1l 69.6 -32.7
2 8l1.3 -180

3 92.6 -80

4 43.8 -42.1
5 14.7 1.5
6 t +
7 44.4 -25.0
8 80.3 -87.7
10 69.2 -90.9
11 75.4 -15.7
12 2.6 t
14 75.4 -7.4
15 92.1 -20.0
le + 4.9
17 71.9 t
18 90.9 35.0
19 77.0 22.9
20 97.3 33.5
23 6l.1 61.1
24 74.9 6.1
25 79.9 68.2
26 1‘ —-3
27 74.1 5.3

+ No solution was found with algorithm 1 alone.
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(problems 14-27) the percentage improvement is consistently
well above 60%. In fact the average percentage time savings
over the entire test problem set was approximately 68% which
is slightly better than a two-thirds reduction in computa-
tional time from the amount of time recorded for algorithm 1
in the comparative study. Now the average solution time for
the reduced gradient algorithms has been demonstrated to be
‘one-half to one-third of the time required for a penalty
function algorithm so an average reduction in the solution
time to one-third of the time required by algorithm 1 in the
comparative study should place the combined method on the
same level of computational speed as the reduced gradient
algorithms. This fact is not that obvious from Table 6.1.
The combined method produced slower solution times on most of
the easier problems but on the more difficult problems the
solution times were generally better than for algorithm 11.
The problems where the combined method was significantly
slower were generally problems in which only one or two con-
straints were active and algorithm 11 had extremely fast
solution times. Even for these problems, however, the solu-
tion time for the combined methods was well below the average
solution times for all of the methods.

The overall performance of the combined algorithms is
best described by relative rankings based on the problems
solved within a given percentage of the average time. The
combined method solved 78.3% of the problems within 25% of

the average solution time, 87% within 50% of the average
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solution time and 100% within 75% of the average solution
time. This would rank the combination of the algorithms at
the top in every ranking, even above the reduced gradient
algorithms.

Performance on the additiaional test problem set was al-
so excellent. Progress on problem 9 was slightly better than
for either algorithm 1 or 11 alone, and for problem 13 the
same solution was located as by all of the better gradient
based algorithms. It was on problems 21, 22 and 30 where the
combined method really demonstrated its advantage over either
algorithm applied separately. Algorithm 1 alone was not able
to satisfy all of the inequality constraints on problems 21
and 22 but was able to locate the vicinity of the optimal
solution. On problem 30, algorithm 1 was simply unable to
satisfy the eleven equality constraints but with a loose line
search criteria and a relatively low penalty factor the al-
gorithm was able to locate a point in the vicinity of the
reported solution. Algorithm 11, on the other hand was able
to satisfy the constraints for all of these problems but it
terminated after making very little progress on each one.

The combined methods located feasible points very close to
the reported solution for problems 21 and 22 and was able

to find the reported solution to problem 30. An excellent
solution was also recorded for problems 28 and 29 although
for problem 29 algorithm 1 made very little progress and the

solution was mainly due to algorithm 11.
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The overall results point out that a combination of the
biased penalty function algeorithm and a generalized reduced
gradient algorithm can produce a computationally fast and
robust method. The method is as fast or slightly faster on
the average as the reduced gradient algorithm was alone and
added a measure of robustness to both of the algorithms ap-
plied separately. It should be noted, however, that the
strength of the combined method is due to the application of
the generalized reduced gradient algorithm to handle the con-
straints directly in phase two, for it was this phase of the
algorithm which allowed the implementation of the phase one
algorithm in its present form. Actually the location of the
optimal region by the phase one algorithm acts as a computa-
tional extension of the reduced gradient algorithm, allowing

initial explorations to occur in the infeasible region.

6.3 Combination of Biased Penalty and Repetitive

Linear Programming Algorithms

The results from the combination of the biased penalty-
reduced gradient algorithms provides the motivation to in-
vestigate other combinations which have the potential of pro-
ducing a similar algorithm. The implementation of the phase
one algorithm could be identical to the previous combined
method if another algorithm which handles the constraints
directly could be applied as a phase two algorithm. What
would be desirable would be te implement an algorithm which

is as readily available as is a penalty function algorithm
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and which is less computationally complex than the reduced
gradient algorithms. Such a method is the repetitive linear
programming method. From the comparative study it was deter-
mined that the basic cause of failure for this type of algo-
rithm was the inability to move through an unconstrained
region to locate the active constraints. The solution times
on heavily constrained problems were generally quite good for
the repetitive linear programming methods. It would seem
then, that this type of method would be an excellent choice
for a phase two algorithm. The application of the biased
penalty function method, algorithm 1, as a phase one method
will be used again to locate the vicinity of the optimal
solution, and the repetitive linear programming method,
algorithm 9, will be started from this point.

Interfacing these two algorithms was even an easier task
than for the biased penalty-reduced gradient combination, be-
cause the repetitive linear programming algorithm did not re-
quire a feasible starting point with respect to the inequality
constraint set. Artificial variables were used, however, to
provide initial feasibility for the equality constraint set.
The artificial variables were introduced to eliminate the
possibility of divergence of Newton's method in initially
satisfying the equality constraints.

The recorded sclution times were again very good for the
combined algorithm. The percentage decrease in solution time
for the combined algorithms over the normal solution times

for algorithms 1 and 9 on the rated test problem set is
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presented in Table 6.2. As for the combination of algorithms
1l and 11, this combination solved all of the rated test prob-
lem set, and again for the large majority of the test prob-
lems a significant reduction in the solution time regquired by
algorithm 1 was recorded. No improvement was recorded over
algorithm 1 for problems 4, 5, 10 and 12 since these problems
only contained variable bounds and no functional constraints.
The normal solution of algorithm 1 was used for these problems
since the method of repetitive linear programming does not
handle this type of problem well. Again, however, the normal
solution time for algorithm 1 was quite small for these prob-
lems. The only other problem where an improvement in the
solution time was not produced over algorithm 1 was problem 7
where the solution time actually increased over 40%. Even
with this increase the solution time on problem 7 was less
than 50% of the average time for all of the tested algorithms
on that problem. On all of the other problems, and especially
for the more difficult problems the percentage reduction over
algorithm 1 was quite similar to the biased penalty-~reduced
gradient algorithm combination. The average percentage time
savings over algorithm 1 for this algorithm on the rated set
of test problems was found to be on the order of 50%. This
is again a significant time reduction and places the compu~-
tational speed of the algorithm close to the level of the
reduced gradient algorithms. The percentage improvement over
algorithm 9 is much the same as for the biased penalty-re-

duced gradient combination over algorithm 11 as can be seen
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Table 6.2 Percentage Improvement in Solution Time for
the Biased Penalty~Repetitive Linear Programming
Combined Algorithm over Algorithms 1 and 9.

Problem Percentage Improvement
over Algorithm 1 over Algorithm 9

1 64.4 ~26.8
2 79.6 -53.3
3 91.8 -250.0
4 0.0 t

5 0.0 +

6 + +

7 ~-41.1 -1.6
8 74.1 8.0
10 0.0 64.2
11 81.9 t

12 0.0 93.9
14 59.3 2.2
15 85.6 -2.9
16 t 84.4
17 36.4 -83.9
18 95.8 30.7
19 77.0 43.8
20 92.9 -18.1
23 70.2 t

24 74.8 -17.6
25 79.7 +

26 t ‘ -120

27 56.6 32,6

+ Algorithm applied alone did not reach the solution.
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in Table 6.2. The solution time on the easier problems in~ -
creased by rather large amounts but the solution times on
these problems were still well below the average solution
times. Again the best measure of performance is the relative
rankings. The fact is that the relative rankings for this
combination are on par with the reduced gradient algorithms
with 65.2% of the problems solved within 25% of the average
time, 82.6% of the problems solved within 50% of the average,
91.3% within 75% of the average time, and 100% of the prob-
lems were solved within 100% of the average time.

The combination of the biased penalty-repetitive linear
approximation was generally slightly slower than the biased
penalty-reduced gradient combination. This can be seen in
Table 6.3 where the percentage increase in solution time for
the biased penalty-repetitive linear programming combined
method over the biased penalty-reduced gradient combined
algorithm is presented. On the average a twenty percent in-
crease in solution time was noted. So while the combination
of algorithms 1 and 9 ranked slightly behind the combination
of algorithms 1 and 11 the total rankings are at the level
of the generalized reduced gradient algorithms and signifi-
cantly above the rankings of either algorithm 1 or algorithm
9 in the comparative study.

The performance on the additional test problems was also
fairly good. The solutions found for problems 9 and 13 were
basically the same as for the combination method of algorithms

1 and 11. The optimal solution was located for problems 21
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Table 6.3 Percentage Increase in Solution Time for the
Biased Penalty-Repetitive Linear Programming
Combined Algorithm over the Biased Penalty-
Reduced Gradient Combined Algorithm.

Problem Percentage Increase
1 14.6
2 8.7
3 10.7
4 43.7
5 20.0
6 43.7
7 60.6
8 23.9

10 69.1
11 -36.1
12 2.5
14 39.6
15 ) 44.8
16 ’ 68.8
17 55.9
18 ~118.3
19 0.0
20 6l.6
23 -30.5
24 .6
25 1.0
26 55.3

27 40.4
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and 22 and excellent progress was reported on problem 29.

The highly nonlinear maximum stress constraint in problem 28,
and the presenceof the eleven equality constraints in prob-
lem 30 were not handled well by the repetitive linear pro-
gramming algorithm and no feasible point could be found on

either of these problems.

6.4 Discussion

The combination of the biased penalty function algorithm
with either the reduced gradient algorithm or the repetitive
linear programming algorithm demonstrated an improved level
of performance over any of the algorithms applied singly.
This was basically due to the fact that the combined algo-
rithms complimented each other, with each algorithm perform-
ing a specific function in a computationally efficient manner.
The penalty function algorithm, with a loose line search
criteria and a loose overall convergence criteria was able to
locate the vicinity of the solution quickly. The generalized
reduced gradient algorithm or the repetitive linear pro-
gramming algorithm was then able to satisfy the violated
constraints and to locate the optimal solution. The gen-
eralized reduced gradient algorithm produced a slightly fast-
er combination and was able to handle even highly nonlinear
problems and problems which contained many nonlinear equality
constraints. Thé repetitive linear programming algorithm

performed quite well also but was unable to follow extremely
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nonlinear constraints or to make much progress when many
nonlinear equality constraints were present. The basic
simplicity and the general good performance of the penalty
function-repetitive linear programming algorithm are the
basic advantages of this combination, while the unmatched
overall performance of the penalty function-generalized
reduced gradient combination is the advantage of this

combination.
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The first and most noteworthy conclusion which can be
drawn from the comparative study is that the linear approx-
imation methods and in particular the generalized reduced
gradient algorithms were more effective than any of the pen~
alty function algorithms. The generalized reduced grédient
algorithms solved a greater percentage of the test problems
and were significantly faster than any other type of method.
This superiority was demonstrated in all of the relative
rankings based on the number of problems solved within a giv-
en percentage of the average solution time where the gener-
alized reduced gradient algorithms consistently ranked at
the top. In the study of how the algorithms were affected
by the type of problem being solved the generalized reduced
gradient algorithms were consistently two to three times
faster than the penalty function algorithms. The generalized
reduced gradient algorithms also demonstrated a superior
level of control from a users standpoint. This increase in
control was due to the ability to specify the level of toler-
ance allowed in the active constraint set and for the vari-
ables at a bound. The penalty function algorithms had no

such feature and there was no way of guaranteeing any
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specific level of constraint satisfaction. Problem dependent
user parameters were not found to be as important to the
generalized reduced gradient algorithms as to the penalty
function algorithms. There was no need to specify any penal-
ty or penalty reduction factors so although more control over
problem solution was available very few input parameters had
to be selected by the user. The standard values of the input
parameters as suggested in the users manual for the general~
ized reduced gradient algorithms wofked very well for the test
problems in the comparative stﬁdy and rarely was any parameter
adjustment required. The generalized reduced gradient algo-
rithms were also able to obtain a very high level of accuracy
in the final solution. This is demonstrated by the high
relative rankings even when the total allowed error was very
small. Again no other type of algorithm was able to repro-
duce this feature. The generalized reduced gradient algo-~
rithms were also found to be effective on a wide variety of
probléms including problems containing equality constraints
which were handled in a particularly effective fashion. So
the generalized reduced gradient algorithms have clearly
demonstrated a superior level of performance over the other
classes of methods being both faster and able to solve more
of the test problem set than the penalty function algorithms.
The only problems encountered with the generalized reduced
gradient algorithms were the tendency to follow constraints
to local minima on several of the additional test problems

and the inability of the presently available generalized
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reduced gradient algorithms to handle problems where deriva-
tive information may not be calculated accurately. The prob-
lem of the generalized reduced gradient algorithms follow-
ing constraints to local minima is not a serious drawback
since essentially all algorithms available today search for
local minima, but following the constraints on several of

the highly constrained problems resulted in very little
progress being made by the generalized reduced gradient algo-
rithms. If the generalized reduced gradient algorithms stop
after making little progress on a problem the user is en-
couraged to try an alternate starting point.

The repetitive linear programming methods, especially
algorithm 9 (RALP}, produced excellent solution times on a
majority of the problems but their behavior became very
erratic when required to move through any unconstrained
region, or on extremely nonlinear problems. This type of
behavior would have to be expected of an algorithm based on
a linear programming technique.

The penalty function algorithms were found to be some~
what slower than the linear approximation algorithms. Out
of all of the penalty function algorithms tested, however,
those applying a variable metric technique for the generation
of search directions for the successive penalty stages proved
to be most effective, but even these methods required two to
three times more computational time than the generalized
reduced gradient algorithms. The basic trouble encountered

with the penalty function algorithms was in obtaining
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sufficient constraint satisfaction. The exterior penalty
function algorithms generally approached the solution from
the infeasible region and frequently were unable to satisfy
all of the constraints to any degree of accuracy. The inter-
ior penalty function algorithms had the same basic difficulty
with the exception that the solution was approached from the
feasible region and the problem was not with inequality con-
straint violation but in not being able to obtain sufficient
constraint tightness to zero in on the optimal value of the
objective function. A similar difficulty was noted for both
the interior and exterior penalty functionson equality con-
strained problems, along with a tendency to get hung up on an
equality constraint and not being able to move. To obtain
any significant level of accuracy in the objective function
and constraints at the solution tight convergence was re-
quired at each successive stage and the penalty parameter

had to be increased or decreased in relatively small levels
to prevent the contours from becoming overly distorted. This
resulted in the peuélty function algorithms requiring an ex-
cessive amount of solution time. The biased penalty function
algorithm had slightly less difficulty in obtaining constraint
satisfaction which was most likely due to the fact that the
distortions of the successive penalty contours are less than
for the other penalty function algorithms, but even the bi-
ased penalty method did require some parameter adjustment

to achieve constraint satisfaction. This type of parameter

adjustment was necessary for almost every exterior penalty
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function algorithm. The one advantage of the penalty func-
tion algorithms was that methods are available which do not
require derivatives. This type of method, as was previously
mentioned, is not currently available in any method employing
a generalized reduced gradient approach. These nongradient
penalty function algorithms are the only methods available
to solve the problems where gradient information does not
exist.

All of the algorithms tested were found to be extremely
sensitive to the number of design variables in a problem.
The solution times increased dramatically for any increase
in the total number of design variables. As the number of
variables is increased to the level of 75 to 100 a solution
time of well over 1000 seconds of time could be expected
(on a CDC 6500 machine). This estimation is based on the
extrapolated time from the solution time required on a set
of quadratic problems which would have to be considered as a
lower bound on the solution time expected in general usage.
The largest number of design variables contained in any
problem considered in the comparative study was forty-eight
and only six of the algorithms tested were able to produce a
solution. The recorded solution times on this problem ranged
from approximately sixty seconds to well over two hundred
seconds, with three best solution times on the problem
achieved by generalized reduced gradient algorithms. Another
limitation regarding the number of design variables which can

be handled by the majority of codes currently available is
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due to the program dimensioning. Several of the algorithm
are limited to a maximum of fifty design variables and

others to one hundred. The two exceptions are the general-
ized reduced gradient algorithm OPT and the biased penalty
function algorithm BIAS, both of which are variably dimen-
sioned and the only physical limitation on the size of prob-
lem which can be handled is the amount of storage space
available on the computer system being used. An increase in
the number or type of constraints or an increase in the
nonlinearity did not have as large an effect on the solution
times as did an increase in design variables. The percentage
change for variations in the problems was remarkably similar
for all of the various types of algorithms. This means that
the generalized reduced gradient algorithms would be expected
to hold the 100% to 200% time savings over the penalty func-
tion algorithms on all types of problems. This result simply
points out the desirability of the generalized reduced gradi-
ent algorithms on large scale problems or for problems where
the objective function or constraints require a large amount
of computational time to evaluate.

A combination of a penalty function algorithm with a
method to handle the constraints directly was found to be
very effective. The biased penalty function algorithm with
a loose line search criteria and a loose overall convergence
criteria was found to be very effective in locating the
vicinity of the optimum quickly. A generalized reduced

gradient algorithm, starting from the point located by the
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penalty function algorithm, was then very effective at sat-
isfying the constraints and converging to the optimal solu-
tion. This combination proved to be very fast and reduced
the tendency of the generalized reduced gradient algorithm
to follow constraints to a local minimum. The total perform-~
ance of this combination proved to be superior to the per-
formance of any single algorithm in the relative rankings,
including the generalized reduced gradient algorithms.

This superior level of performance was due more to an increase
in the number of test problems solved than to a decrease in
computational speed although on several of the more difficult
problems a significant reduction in time over the generalized
reduced gradient algorithm was recorded. The application of
a repetitive linear programming in place of the reduced
gradient algorithm for the combined method alsoc proved to be
effective. The performance of this combination on the test
problem set was as good as the generalized reduced gradient
algorithms in the relative rankings for the comparative study.
This combination was not quite as fast as the penalty func-
tion-generalized reduced gradient combination, requiring an
average of approximately twenty percent more time than the
penalty function-generalized reduced gradient combination

on the test problems. The combination still had difficulty
with highly nonlinear problems but the overall simplicity,
the availability of the methods, and the relatively good

performance are the strengths of this combination. Thus the
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performance of even the best methods can seem to be en-
ehanced by the combination of algorithms.

In summary then there are methods currently available
which will handle a broad range of nonlinear programming
problems in an efficient manner. Difficulties with large
scale problems and the possibility of locating local minima
exist but the overall usefulness of the available algorithms

is sufficient to encourage their general use.

7.2 Recommendations

Although no single algorithm can be expected to solve
every problem encountered, it is the recommendation of this
study that the generalized reduced gradient algorithms should
be applied to solve the problem before any other method is
tried. The ability of this class of algorithms to solve
problems in an efficient manner is not matched by any other
class of algorithms. The high degree of user control in-
herent in the generalized reduced gradient algorithms also
lends itself to general problem solution. The author would
also recommend further development of the generalized reduced
gradient algorithms. Most of the reduced gradient algorithms
have been developed recently and little work has been done to
determine the best method for generating search directions,
the manner of basic variable selection and subsequent basis
changing, and the numerical technique of solving the set of
nonlinear equations. Another area of possible research is

the application of the same type of logic contained in the



170

generalized reduced gradient algorithms to produce an algo-
rithm which is not dependent upoh gradient information.
Perhaps this research would result in a generalized reduced
gradient optimization package. This type of package could
then be applied to problems with or without gradient infor-
mation available.

Another recommendation would be that any future compari=-
son of nonlinear programming algorithms should include at
least one of the generalized reduced gradient algorithms
tested in this study to provide a reference to the relative
performance of the additional algorithms. Finally further
investigation of the combination of penalty function
algorithms and the linearization type methods is recommended
since this type of combination has demonstrated a level of

performance which is superior to any single algorithm.
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Appendix A

Description of Algorithms

(). METHOD OF MULTIPLIERS (BIASED PENALTY FUNCTION)

AVAILABILITY: K. M. Ragsdell, School of Mechanical
Engineering, Purdue University, W. Lafayette, Indiana.

REFERENCE: Schuldt et all [43]
METHOD: Exterior penalty function of the form

K

— - - 2
P(x, o™, ™) - £ + szl{<gk(X) + 0]im)> _[Uém)]z}

’

L - 2
£ R (1h, @+ ™% 2

=1
where
oém+l) = <gk(§(m)) + oém)>; k=1,2,3, ..., K
and
r?”n =h2&“m)+rg”; £=1,2,3, ..., L

FEATURES: This form of penalty function seeks to minimize
distortions of the successive penalty function contours.

The method leaves the curvature of the contours unchanged
from stage to stage for linear constraints and a second
order influence on the curvature is present for nonlinear
constraints. The computational algorithm applies the
Davidon-Fletcher-Powell technique to generate the uncon-
strained search directions and handles variable bounds
internally. The penalty parameter R does not vary from stage
to stage.
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(2). SEEK1l

AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: 8Siddall ([51]

METHOD: Semi interior penalty function (once constraints are
satisfied they generally will remain satisfied) of the form

K L
- — 20 _ 20 —
P(x) = £(x) + 10 <g, (X)>]| + 10 h, (x)
DREENCE 1 In @)

FEATURES: A Hooke-Jeeves direct search is made followed by a
random check. If the random check produces a better point
the method is restarted from that point.

(3). SEEK3

AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: Siddall [51] ‘
METHOD: Interior penalty function of the form
h, (x)

— — K 1
P(x) = £(x) + R ] — +
k=1 g, (x) L

S

1 R

i o1}

FEATURES: To obtain a feasible starting point the penalty
function of algorithm (2) is applied. The successive
stages are generated by updating the penalty parameter

by R*REDUCE where the value of REDUCE is much less than one.

(4). APPROX

AVAILABILITY: J. N, Siddall, School of Mechanical
BEngineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: Siddall [51]

METHOD: Successive linear programming algorithm.
FEATURES: The method of Griffith and Stewart is employed,
with the Simplex algorithm to handle the successive linear

programming problems (Note: variable bounds are treated as
inequality constraints).
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(5). SIMPLX

AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: Siddall [51)
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: The simplex direct search method is employed for

the unconstrained stages. The stages are updated as for
algorithm 3.

(6). DAVID

AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: Siddall [51]
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: The Davidon-Fletcher-Powell technique is applied

to the unconstrained stages. The stages are updated as for
algorithm 3.

(7). MEMGRD

AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.

REFERENCE: Siddall [51]
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: Miele's memory gradient algorithm [52] is

employed for the unconstrained penalty stages. The stages
are updated as for algorithm 3.

(8). GRGDFP

AVAILABILITY: Proprietary code owned by the Whirlpool
Corporation, Benton Harbor, Michigan.

REFERENCE: LaFrance [53])
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METHOD: Generalized reduced gradient algorithm.

FEATURES: The Davidon-Fletcher Powell technique is used
to generate the search directions. The introduction of
slack variables for the inequality constraints and arti-

ficial variables for the violated constraints is required
of the user.

(9). RALP

AVAILABILITY: §S. B. Schuldt, Honeywell Corporate Research
Center, Bloomington, Minriesota.

REFERENCE: Schuldt [54]
METHOD: Successive linear programming algorithm.
FEATURES: The method of Griffith and Stewart is employed

with Newton's method applied to maintain equality constraint
satisfaction. The bounded simplex method is employed to

solve the successive linear programming problems.
(10). GRG

AVAILABILITY: Computer and Information Science Department,
Cleveland State University, Cleveland, Ohio.

REFERENCE: Lasdon et all [55, 56]

METHOD: Generalized reduced gradient algorithm.
FEATURES: The Broyden~Fletcher-Shanno technique is used
to generate the search directions. The search for a
feasible starting point is accomplished by minimizing the

sum of constraint violations again applying the BFS tech-
nique. Variable bounds are handled internally.

(11). opT

AVAILABILITY: K. M. Ragsdell, School of Mechanical
Engineering, Purdue University, W. Lafayette, Indiana.

REFERENCE: G. A. Gabriele [57]

METHOD: Generalized reduced gradient algorithm.
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FEATURES: The conjugate gradient technique of Fletcher-
Reeves is employed to generate the search directions.

The search for a feasible starting point may be handled
internally with the sum of the constraint violations
minimized by Powells conjugate direction method or by the
user by the introduction of artificial variables. The
variable bounds are handled internally.

(12). GREG

AVAILABILITY: J. Abadie, Electricite' De France, Paris,
France.

REFERENCE: Guigou [58]

Method: Generalized reduced gradient algorithm.
FEATURES: The conjugate gradient technique of Fletcher-
Reeves is employed to generate the search directions.
The search for a feasible starting point is handled

internally by the introduction of artificial variables.
The variable bounds are also handled internally.

(13). COMPUTE II METHOD 0
AVAILABILITY: Gulf 0il Corporation, Houston, Texas.
REFERENCE: Gulf 0il Corporation [59]
METHOD: Exterior penalty function of the form
L

K
- — 2 — 2 ,—-
P(x,a,8) = £(x) + A{ a  h, (%) + a, 8 {x) }
* 121 ) kglk x 9k

where A is the penalty coefficient, a, are positive scale
factors, and J

8

{ x) £
g = 0 if gk(x) 2

0
8 =1 if gk(X) > 0

FPEATURES: The Hooke-Jeeves direct search technique is
applied to the unconstrained stages. The penalty stages are
generated by multiplication of A by a constant at each

stage. Scale factors are employed to avoid domination of

the penalty function by any constraint or group of constraints
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and are recalculated at the beginning of each stage.

All input parameters are set internally and the initial
penalty coefficient is set so that at the initial stage
the penalty function is most sensitive to the objective
function. The input parameters may be set by the user if
he so desires. Variable bounds are handled internally.

(14). COMPUTE II METHOD 1

AVAILABILITY: Gulf 0il Corporation, Houston, Texas.
REFERENCE: Gulf 0il Corporation [59]

METHOD: Exterior penalty function (same as for algorithm 13).
FEATURES: Same as for algorithm 13 with the exception that
the Conjugate Gradient technique of Fletcher-Reeves is

employed to generate the search directions for the penalty
stages.

(15). COMPUTE II METHOD 2

AVAILABILITY: Gulf 0Oil Corporation, Houston, Texas.
REFERENCE: Gulf 0il Corporation [59]

METHOD: Exterior penalty function (same as for algorithm 13).
FEATURES: Same as for algorithm 13 with the exception that

the Davidon-Fletcher-Powell technique is employed to
generate the search directions for the penalty stages.

(16). COMPUTER II METHOD 3

AVAILABILITY: Gulf 0il Corporation, Houston, Texas.
REFERENCE: Gulf 0il Corporation [59]

METHOD: Exterior penalty function ksame as for algorithm 13).

FEATURES: Same as for algorithm 13 with the exception
that Keefer's Simpat algorithm [60] is employed to generate
search directions for the penalty stages. This method
utilizes a pattern search technique for the variables near
their bounds and the Simplex method of Nelder and Mead [61]
for the rest of the variables.
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(17). EXPEN #1

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function of the form
K

L
P(x) = £(x) + R § <gk(x)2> +R ) hz(f)2
k=1 =1

FEATURES: A univariate search technique is applied to the
successive penalty stages. Each stage is updated by
multiplication of the penalty factor R.

(18). EXPEN #2

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State Univesrity of New York at Buffalo.

REFERENCE: AaAfimiwala [62}
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The method of steepest descent is applied to

the successive stages. The quadratic line search was
used.

(19). EXPEN #3

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala -[62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Conjugate Direction method of Powell is

applied to generate search directions for the successive
stages. Again the quadratic line search was used.
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(20) . EXPEN #4

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Conjugate Gradient technique of Fletcher-

Reeves is applied to generate search directions for the
successive stages. The quadratic line search was used.

(21). EXPEN #5

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]

METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Variable Metric search technique of Davidon-
Fletcher-Powell is applied to generate search directions

for the successive stages. The quadratic line search was
used.

(22). EXPEN #6

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).

FEATURES: A Hooke-Jeeves pattern search is applied to the
successive stages.

(23). TIPENAL #1

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]

METHOD: Interior penalty function of the form
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K
PR) = £ - § —B—+ 2

k=1 gk(f) YR =1

2 -
2(x)

1

h

FEATURES: A univariate search technique is applied to the
successive penalty stages. An extrapolation scheme is
employed between stages to predict the minimum. The
penalty was reduced by a constant to generate the next
stage.

(24). IPENAL #2

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
METHOD: Interior penalty function (same as for algorithm 23)
FEATURES: The method of steepest descent is applied to

the successive stages. The quadratic line search was used
and the extrapolation scheme was used as on algorithm 23.

(25). IPENAL #3

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]

METHOD: Interior penalty function (same as for algorithm 23).
FEATURES: The Conjugate Direction method of Powell is
applied to generate search directions for the successive

stages. The quadratic line search was used and the
extrapolation scheme was used as on algorithm 23.

(26). IPENAL #4

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
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METHOD: Interior penalty function (same as for algorithm 23).

FEATURES: The Conjugate Gradient techniqu of Fletcher-
Reeves is applied to generate search directions for the
successive stages. The quadratic line search was used and
the extrapolation scheme was used as on algorithm 23.

(27). IPENAL #5

AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.

REFERENCE: Afimiwala [62]
METHOD: Interior penalty function (same as for algorithm 23).

FEATURES: The Variable Metric search technique of Davidon-
Fletcher~Powell is applied to generate search directions
for the successive stages. The quadratic line search was
used and the extrapolation scheme was used as an algorithm
23.

(28). SUMT-1

AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.

REFERENCE: Mylander et all [1]

METHOD: Interior penalty function of the form
_ _ K _ L 5 _
P(X,R) = £(X) - R Ing, (x) + } [h%(x)/R]
k=1 =1

FEATURES: The generalized Newton-Raphson method modified
to handle indefinite Hessian matrices is employed to
generate the search directions for the successive stages.
The value of the penalty parameter R is reduced by a
constant factor to form the successive stages. An
acceleration procedure using the Lagrange extrapolation
technique is applied.
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(29). suMT-2

AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.

REFERENCE: Mylander et all [1]

METHOD: Interior penalty function (same as for algorithm 28).
FEATURES: Same as for algorithm 28 with the exception that
when an orthogonal move is made because of an indefinite

Hessianmatrix a negative gradient component is added to
the orthogonal move vector.

(30). SUMT-3

AVAILABILITY: Research Analysis Corporation, Mclean,
Virginia.

REFERENCE: Mylander et all [1]
METHOD: Interior penalty function (same as for algorithm 28).
FEATURES: Same as for algorithm 28 with the exception that

the method of steepest descent is used to generate search
directions for the successive stages.

AVAILABILITY: Research Analysis Corporation, Mclean,
Virginia.

REFERENCE: Mylander et all [1]

METHOD: Interior penalty function (same as for algorithm 28).

FEATURES: Same as for algorithm 28 with the exception that
a modified Fletcher-Powell Variable Metric technique is
used to generate the search directions for the successive
stages.
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(32). EO4HAF - 0

AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.

REFERENCE: The University of Liverpool Computer Laboratory
[63]

DESCRIPTION: Interior-Exterior penalty function of the form

J K
P(X,R) = £(X) - R ] 1logg.(X) + 1/R ) {min(O,g.(}T))}2
j=1 J j=J J

L 5 _
+ 1/R ] hj(x)
=1

This penalty form was previously used by Lootsma [64]. The
inequality constraints are divided into two subsets. The
inequality constraints which are not violated at the starting
point are contained in the log penalty term and those
inequality constraints which are violated at the starting
point are contained in the gj(§)2 penalty term.

FEATURES: The Conjugate Direction algorithm of Powell is
employed to generate search directions for the successive
stages. Each new stage is generated by reducing the penalty
parameter by a constant. Polynomial extrapolation of the
successive cycles is employed up to order 6 which is
employed to accelerate the convergence of the method.

(33). EO4HAF -1

AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.

REFERENCE: The University of Liverpool Computer Laboratory
[63]

DESCRIPTION: Interior-Exterior penalty (same as for algorithm
32)

FEATURES: Same as for algorithm 32 with the exception that
the Variable Metric technique of Broyden-Fletcher-Shanno

is employed to generate search directions for the successive
stages.
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(34). EO4HAF -~ 2

AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.

REFERENCE: The Univesrity of Liverpool Computer Laboratory
[63]

DESCRIPTION: Interior-Exterior penalty (same as for al-
gorithm 32). .

FEATURES: Same as for algorithm 32 with the exception that

a modified Newton approach is employed to generate search
directions for the successive stages.

(35). COMET

AVAILABILITY: D. M. Himmelblau, The University of Texas,
Austin, Texas.

REFERENCE: Staha [65]
DESCRIPTION: Exterior penalty function of the form

K
B(X,R) = Min[0,(t-£(0)}]2 + § Min [0,q, (%12
k=1

If h? (%)
+ X
g=1 *

FEATURES: This is another penalty technique which seeks to
reduce the distortion of the penalty surface. The variable
metric technique of Fletcher is employed to generate the
search directions for the successive stages.



Appendix B

Test Problem Descriptions and Fortran Listings

{(l1). Test problem #1 used by Colville [27] and test
problem #1 used by Eason and Fenton [40].

GENERAL INFORMATION:
5 Variables
10 Functional inequality constraints

5 Variable bounds; xj 20 j3=1,2, ...,5

STARTING INFORMATION:

fb = [0,0,0,0,1) f(ia) = 2.0

g, (x,) = 40 gg (X)) =1

g,(x,) = 4 g, (x_ ) = 39

gyix,) = .25 gg(X ) = 59

g4(§6) = 3 gg(ig) =0

gs(fs) = 1.2 910(26) = 0
SOLUTION:

x* = [.3, .33329998, .4, .42790241, .22435808]}

£(x*) = 3.234866708

Constraints #3, 5, 6 and 9 are active.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #1

FUNCTION F(X)
DIMENSION X(1)

DIMENSION E(3)»C(SeS5)»D(S)

DATA (C(I)!I=1'25) /300!‘200'—10.!320!‘100!“200!390!‘6.!
1‘310!320!“1009‘60'10!!"60!—100!320!“310!‘6073901”200’_100!
2320!‘100!‘200!300/

DATA (E(I)»I=125) /~18.9-27¢9-3449v-18.y~-12./

DATA (D(I)»I=193) /4:38:910:96492:/

Ui=0.0

U2=0.0

U3=0.0

DO 10 J=1+3

Ul=U1+E(JI %X (D)

U3=U3+D(JIY KX (JIRX (DI RXCI)D

DO 10 I=1+5

U2=U24CC Ty IXXCIIRX (DD

10 CONTINUE

F=(U14+U2+U3)/10.0
RETURN
END

SUBROUTINE CONST{(XsNCONS»PHI)?

DIMENSION XC(1)sPHIC1)»A{10,5)R(1IO)

DATA (A(I)rI=1950) /-1&64904sr=3:590490:s224r~1ar=1srvlarl,y
1292900 r=2491=~P2e7002=149-2:972¢971 4204907249049 —24r=449~1,4y
2eFer30rdorlerA:ir00r=4erler00r~1ar=2¢er84¢21:490.92:9049~1¢y
3“208!00!"1.9’10!50!10/

DATA (BC(I)sI=1910) /-=40:9-249=e259~4,9=449-149-40,49-60+95.91./

0 5 I=1,10

FPHICI)=0.0

Do 2 J=1+5

FHICI)=PHIC(I)+A(I»JI)%X(J)

PHIC(I)=PHICI)~B(I)

00 10 I=1,5

10 FPHI(10+4I)=X(I?

RETURN
END



(2). Test problem #2 used by Eason and Fenton [40].

GENERAL INFORMATION:
3 Variables
2 Functional inequality constraints
6 Variable bounds xj 20 j=1,2,3

x, 2 20 x, 211 x

<
2 2 42

1 3

STARTING INFORMATION:

X = [10,10,10]

f(ig) = -1

gl(xo) = 50 gz(xo) 22

SOLUTION:

—k
X

[20,11,15)
£(X*) = -3.3

Constraint #2 is active at the solution.

COMMENTS: This problem seeks to design a rectangular box
to maximize volume, subject to post office restrictions
on the length plus the girth and individual limits on the

length, depth and height of the box.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #2

FUNCTION F(XD

DIMENSION X(1)
F==X(1)%XX(2)%X(3)/1000.0
RETURN

END

SUBROUTINE CONST(X¢NPHI»FHI)
DIMENSION X(1)sPHI(1)
PHIC1)=X(1)+2,0%(X(2)+X(3))
FHI(2)=72.,0-X(1)=2.0%(X(2)+X(3))
RETURN

END
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(3). Test problem #3 used by Colville [27] and test problem
#3 used by Eason and Fenton [40].

GENERAIL. INFORMATION:
5 Variables
6 Functional inequality constraints

10 Variable bounds

78 < X; § 102
27 < x, < 45
33 = x, £ 45
27 = x5 £ 45
27 £ x. S 45
3
STARTING INFORMATION:
§6 = [78.62, 33.44, 31.07, 44.18, 35.22)
ftﬁs) = 3.037395
gl(xo) = 91.7927319 gé(xo) = 11.1070673
gz(xo) = ,207268111 gs(xo) = ,131578229
g3(xo) = §.89293266 gs(xo) = 4.86842177
SOLUTION:

x* = [78, 33, 29.995256, 45, 36.775813]

£(x*) 3.06655387
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #3

FUNCTION F(X)
DIMENSION X(1)

F=(5.3578547%X (3 RX(3)+.83568P1XX(1)%X(5)+37,293239%X (1)
1-40792.141)2/710%%4

RETURN

END

SUBRROUTINE CONST(XsNFHIyPHI)

DIMENSION X(1)sPHIC(1)

R1=8%5,334407+,0056858XX (2)XX(5)+.0006262%X(1)%XX(4)-.,0022053%
IX(3)RX(S)

R2=280.51249+.,0071317kX(2) XX (5)+,00299255%kX (1) %X(2)+.,0021813%
2X(3)%kX(3)

R3=9+300961+,0047026XX(3) %X (5)+,0012547%X(1)%xX(3)+.0019085%
3IX(3I%kX(A)

FHI(1)>=R1

PHI(2)=92,0-R1

PHI(3)=R2-90.

PHI(4)=110,0-R2

PHI(5)=R3~20.0

PHI(6)=25.0-R3

RETURN

END
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(4)., Test problem #4 used by Colville [27] and test problem
#4 used by Eason and Fenton [40] (Wood's Test Function).
GENERAL INFORMATION:
4 Variables

8 Variable bounds -10 < xj < 10 i=1,2,3,4

STARTING INFORMATION:

xo = [-3' _1' -3' "l]
£(X_) = 1.9192 x 104
SOLUTION:
x* = [1,1,1, 1]
£{(x*) =0

COMMENTS: This problem is a four dimensional version
of Rosenbrock's test function.
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FUNCTION LISTING FOR PROBLEM #4

FUNCTION F{(X)

DIMENSION X(1)

F=100,0K(XC(2) =X (12 RX (1) I RK2+(1e~X (1) IRK2+P0, K (X (A =X (3IRX(3) I kX2
1410420 (X(2)-2 02 RR2FH(X(AI =1 IXKX2)+1P.8K(X(2)-1.2%(X(4)~-1,)
24(1.0-X(3) ) k%2

RETURN

END
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(5). Test problem #5 used by Eason and Fenton [40]
{Rosenbrock's Test Function).
GENERAL INFORMATION:
2 Variables

4 Variable bounds -2 s x, £ 2

STARTING INFORMATION:
-fo = [-102' 1]

f(xo) = 24,2

SOLUTION:
x* = [1, 1]
£(xX*) =0



199
FUNCTION LISTING FOR PROBLEM #5

FUNCTION F(X)

DIMENSION X(1)

F=100,0K(X(2)=-X{(1)%X (1) 2kk2+4(1.0-X(1))%k%2
RETURN

END
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(6). Test problem #6 used by Colville [27] and test
problem #6 used by Eason and Fenton [40].
GENERAL INFORMATION:
6 Variables
4 Equality Constraints

12 variable bounds

0 = Xq < 400 340 £ X, < 420
0 s Xy < 1000 -1000 = X £ 1000
340 = X3 £ 420 0 =2 Xe S .5236

STARTING INFORMATION:
§6 = [390, 1000, 419.5, 340.5, 191.175, .5]
f(xo) = 42.09

hl(xo) 505.628021

il
!

il

hz(xo) ~485.540341 h4(xo) = =-389.350454

SOLUTION #1:

x* = [201.78617, 100, 382.96324, 419.9228, -10,784454,
.07317686]

£(x*) = 8.85358521

SOLUTION #2:

x = [107.8034355, 196.3274, 373.82968, 420, 21.311091,
.153299501]

£(x*) = 8.927597736

COMMENTS: This problem concerns the optimization of an
electrical network (two nodes).



201
FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #6

FUNCTION F(X)

DIMENSION X(1)

F=0,0

IF(XC(1)+BE+O+O0¢AND+X(1)+LT¢300+) F=F+30,0%X(1)
IF(X(1).GE+300,0) F=F+31.0%X(1)
IF(X(2):GE+0+0.AND+X(2)+L.Te100.0) F=F+28.0%X(2)
IF(X(2)«GE+100+0.AND+X(2) LT +200.0) F=F+29,0%X(2)
IF(X(2).6E+200,0) F=F+30,0%X(2)

F=F/10%%3

RETURN

END

SUBROUTINE EQUAL (XrPHIsNPSI)

DIMENSION X{1)sPHI(1)

A=.90798

B=131.078

AA=,00889

BR=1,48477

C=300.0

D=200.0
PHIC1)=C~X(3)%X{(4)/BXCOS(BB~X(6))+X(3)%X{(3)XA/BXCOS(RB-AA)-X(1)
PHI(2)==X(3)%X{4)/BXCOS(BB+X(6))+X(4)¥X(A)KkA/BXCOS(BE~AA)-X(2)
PHI(3)=D=-X(3)%X(4)/BXSIN(BB-X(6))+X(3)%X(3)%A/BXSIN(BB-AA)
PHI(4)=-X(3)%X(4)/BXSIN(BB+X(5))+X(4)%X(4)XA/BXSIN(BB-AA)-X(5)
RETURN

END
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(7). Test problem #7 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables
1 Functional inequality constraint

4 Variable bounds 0 = xj 25 j=1,2

STARTING INFORMATION :
;5 = [2.5, 2.5]
£F(x ) = .519472
o]
91(25’ = ~52,875

SOLUTION:
x* = [1.28667635, .53046168]
£(X*) = 1.62058332

Constraint #1 is active.

COMMENTS: This problem concerns the design of a journal
bearing to minimize a weighted function of frictional
moment, angle of twist of the shaft, and lubrication oil
temperature rise. The functional constraint expresses

a minimum load-carrying requirement at a given speed.

X, = radius of bearing; X, = bearing half length.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #7

FUNCTION F(X)

DIMENSION X(1)
FECoA4XXCLIRXCLIRXLLDIZEX(2)KX(2)I420.,0/7XC1)+,:592%KX(1)/7(X(2)
IRX(2)%X(2)))/710.0

RETURN

END

SUBROUTINE CONST(XyNPHIyPHI)

DIMENSION X(1)sPHI(1)
FHIC1)=1.0-8,62%X(2)XX(2)%XX(2)/X(1)

RETURN
END
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(8). Test problem #8 used by Eason and Fenton [40].

GENERAL INFORMATION:"
3 Variables
2 Functional inequality constraints

Variable bounds

s 125

6

0 2= x, 2 36
0 = x

0

=

STARTING INFORMATION:

Xg = [22.3, .5, 125]
f(§;) = -3.88334111

gl(xo) = 426.355000 gz(xo) = =.358015625

SOLUTION:

x* = [17.79933636, 2.1305717, 115.00142]

£(x*) = -5.6847825

Constraints #1 and 2 are active.
COMMENTS: This problem concerns the design of a solid
disk flywheel for maximum energy storage subject to con-
straints on the weight, diameter, speed of rotation
and width. The distortion energy theory of failure
provides a constraint based on the internal stresses.

- Alternate optima may be found -

flywheel diameter; Xp = flywheel thickness;
Xy = rotational speed

X
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #8

FUNCTION F(X)
DIMENSION X(1)

Fa=a0201 XX 12 RX (1) RX(1IRX(LIRX(2IRX(IIRX(I)/10%%X7
RETURN
END

SUBROUTINE CONST(XsNFHIsPHI)
DIMENSION X(1)sPHIC(1)
PHI(1)=675.0-X(1)%X(1)%XX(2)
PHI(2)=,419=X{(1)XX{1)%X(3)RX(3)/10%%7
RETURN

END
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(9). Test problem #9 used by Eason and Fenton [40].

GENERAL INFORMATION:
3 Variables
9 Functional inequality constraints
S Variable bounds
1000 < Xy 2 8000 100 = X, 2 500
X 2114
STARTING INFORMATION:

Xy = [5000, 200, 100]

f£(x ) = -.8756765
g, (X)) = 1.9917673 _
| gg (X ) = 1026.2167
g, (X ) = 6.4282327 °
B g, (X ) = 5780.1968
g5 (X ) = 12.289098 !
_ gg (X ) = 53531.059
g, (x,) = 3937.7109 ©
gg (X ) = 175369.93
g.(X_ ) = 57.796032 o
570
SOLUTION:

x* = [7828.7954, 188.81406, 113.81406)
£(x*) = -4.2446134

No constraints active.

COMMENTS: This problem involves the design of a chemical
reactor to maximize profit. The reactor flow rate, x3,

the reactor temperature, x;, and the temperature drop in
the cooling coil are to be selected. The constraints in-
clude an overall energy balance, a stability requirement,
and a heat exchanger analysis. An additional variable bound
was added to restrict the temperature drop in the cooling
coil from approaching an infinite value.
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39

48
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FUNCTION LISTING FOR PRNBLEM #9

FUNCTION F(X)

DIMENSION X(1)

DATA P2sCLIFrC2F yHL1sH2yELvyE2sCPPyP/ 10494075y .025¢8000.78000.»
11000,¢91000,93,6938503,20./

F1=100.,

DO 35 I=1,3

IF(X(I)sLT«1.E~06) X(I)=1,E-06

CONTINUE

XK1=P1XEXF(-E1/(440.+X(2)))

XK2=P2XEXF (-E2/(4460.+X(2)))

VaPAX (1) /(XK2X (X (1)) RC2F-F))
Ci=(X(1)KCIF-P)/(X{(1)4+VEXK1)

UT=43.+,0452%X{(2)

ARGU=(X(2)-X(3)=75:)/(X(2)-100.)

IF(ARGU.EQ,0) GO TO 48
XLMTD=(25.,~-X(3))/ALOG(ABS (ARGU))
HEAT=X{1)XCPFX(100.:=-X(2) ) +XK1XK{(XC(1)XKCIF~-P)XVXHLI/Z{X(1)Y+VUXXK1)+PX
AREA=HEAT/ (UTXXLLMTD)

ARE=ABS (AREA)

HEA=ARS (HEAT)

DIA=(V/12.,72)%%,33333333

IF(X(2).L.T.200,) GO TO 40
PRESE=23,+64+3+.3E-06X (X (2)%X%X3)

GO TO 41

X(2)=X(2)%1.0001

GO TO 39

PRESS=50,

WATE=( ., 020X (DIAXXI I+, 482X (DIAXX2) )XPRESS+36.6X<(DIAKK2)+1460.5%kD
C1=4,8k(WATEX%X,782)

IF(X(2).,LT.200.) GO TO 42

C2=(17.2+,0133%X(2) )XDIAXK2

GO TO 43

C2=0.

IF(FRESS.LT.150.,) GO TO 44

C3=270 X (AREXX . 544) K ( + F624146B.E~09PK(X(2)%%3))

GO TOQ 45

C3=270.¥(AREXX .5464)

C4=1400,+140.X01I4A

CoO=B073 X (L OSKVI%kK . 3)

Co=812:.%(( (6. FFE-04+4,5PE-11X(X(2)%XX3))+X(1))I)%KX.447)
IF(X(2).LT.250) GO TO 46

C7=1291 X ((29B . XHEA/X(3) ) XX .467)

GO TO 47

C7=812.¥( (298 .XHEA/X(3) ) XX,467)
COST=C1+C24+C3+CA+CHHCELH4LCT7

VEST=35,%C0OST
CO=22000.+.,18BXVEST+3+10XV+461 11X ((6,P5E~-044+4.SPE-11K(X(2)%%3))
1XX(1))+.,00115KHEAT+6+ P2XHEAT+574 . %X (1)%X(C1F-C1)+114800,
F=(4868000,-C0)/(2.XVEST)X(-1,E-03)

RETURN

END
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CONSTRAINT LISTING FOR PROBLEM #9

SUBROUTINE CONST(XsNPHIyPHI)
DIMENSION X{(1)sFHI(1)

DATA P2+CiFrC2F rH1sH2sEL+E2+CPPeP/ 1049.075r.025,8000.98000,9
11000.91000.,93.6938503+s20./
® P1=100,
N0 37 I=1»3
IF(XC(I) L. T+14E-06) X(I)=1.E-06
37 CONTINUE
XK1=P1XEXP(~E1/(4460,+X(2)))
XK2=P2XEXP(-E2/(4460.4X(2)))
V=PXX(1)/ (XK2%(X(1)RC2F-P))
Cl=(X(1)XCIF-P)/(X{1>+VXXK1)
UT=43++,0402%X(2)
36 ARGU=(X(2)~X(3)=73.:)/(X(2)-100,)
IF(ARGU.EQ.0.) GO TO 49
XLMTO=(¢25.~X(3))/AL0OG (ARS(ARGU))
HEAT“X(I)*CFF*(iOO.-X(E))+XK1*(X(1)*ClF—P)*U*Hl/(X(l)+V*XK1)+P*H2
AREA=HEAT/ (UTXXLMTD)
DIA=(V/12,72)%%.33333333
IF(X(2).LT+200.) GO TO 44
PRESS=23.6+3.3E-046X(X(2)%X%x3)
GO TO 45
49 X(2)=X(2)%1,0001
GO TO 36
44 RRESS=50,
43 PHI(1)=DIA-1.,25
FHI(2)=9.67-D]A
FPHI(3)=AREA-50.,
FHI(4)=4000,-AREA
All=XK1+X(1)/V
Al12=XK2
913"(X(1)*CIF“PRESS)*XKI*EIIC(X(1)+U*XK1)#((X(2)+460 Ik%k2))
14FPRESSXE2/ (VX (X (2)+460,)%X%X2))
A22=XK2+X(1)/V
A23=PRESSXE2/(VUX((X(2)+460.)%XX2))
A31=—H1XXK1/CFF
AJ2=-HZ2XXK2/CFPP
A33=X(1)/VHUT¥AREA/ (VXCPP )~ (X(1)XCI1F-FRESS)YXXK1XEL1XH1/((X(1)+Vx%
IXK1)XCPFPX((X(2)+460.:)2X%K2))-FPRESSKE2XH2/ (VXCFPR((X(2)+460,)%%2))
TEMF1=A11+A22+A33
PHI(S)=TEMP1
TEMP2=A11XA22+A22%XATI+AIIXAL11-A1IXAT1-A23KA32
FHIC(&6)=TEMF2
TEMP3=A11XA22¥ATI+A12KA2TKAZ1-ALIKAT1IKA22-A2TKAI2KAL11
PHI(7)=TEMF3
FHI(8)=TEMP1XTEMP2-TEMP3
PHI(?)=HEAT
RETURN
END
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(10). Test problem #10 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables

4 variable bounds 1

Ia
%
1,
w
[N
i
H
-
N

STARTING INFORMATION:

x, = [.5, .5]

f(xo) = 2563.325

SOLUTION:

X* = [1.74347038, 2.02963554]

£(x*) = 1.744152006

COMMENTS: This problem concerns the allocation of gear

ratios in a triple reduction spur-gear train to achieve

an overall reduction ratio of 10 with minimum gear train
inertia.



210
FUNCTION LISTING FOR PROBLEM #10

FUNCTION F(X)

DIMENSION X(1)
F=(10¢0+140%X(140+X(12RXC1)+(1.0+X(2IKX(2) )/ (XC1I%X(L) )+
TUXCLIRXCLIRXC2IRXC(2)4100,)/7(X(1)%X(2))%%4)+100./100,)/10,
RETURN

END
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(11). Teét problem #11 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables

2 Functional inequality constraints

4 Variable bounds 0 2 x, £1.5 j

3 1,2

STARTING INFORMATION:

*o = [.75, .75]
f(is) = 2.17360794
gl(xo) = 15.5648030
gz(xo) = 44.4351970

SOLUTION:

x* = [.911398818, .02927999]

£(x*) = 1.1495014726

Constraint #1 is active.

COMMENTS: This problem involves the design of a cam of
minimum plate area. It involves specification of the offset
between the cam center and the knife-edge follower in the
initial position. A logarithmic follower function is
required, and the pressure angle between the cam and

the follower is limited to *30° during a specified portion
of one revolution.



11

49

49
11

FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #11

FUNCTION F(X)
DIMENSION X(1)

COMMON/A1/ PBIG
CON=180./3.1415927

PBIG=-340.

DTR=1,/CON

TR=40,/CON

F=0,

DO 49 I=1,100

G=ALOG(TR)

DY=1./TR

XXX=(B4+X(2) )XSIN(TR)+X(1)XCOS(TR)
YYY=(G4+X(2) IXCOS(TR)~-X(1)XSIN(TR)
RR=XXXEXXX+YYYRYYY

F=F+.5XRRXDTR
FANGLE=CONXATAN(ABS((DY=-X(1))/(G+X(2)2))
IF(PANGLE.GT.PBIG) PBIG=PANGLE
TR=TR+DTR

RETURN -

END

SUBROUTINE CONST(XsNPHIsPHI)
DIMENSION X(1)sPHI(1)
COMMON/AL1/ PRIG
CON=180./3.14159227

FPRIG=-360.,

DTR=1./CON

TR=40./C0N

N0 49 I1=1,100

G=ALOG(TR)

DY=1,./TR
FANGLE=CONXATANCABRS((DY~-X(1))/(G+X(2))))
IF (PANGLE .GT.PBIG) PBIG=PANGLE
TR=TR+DTR

PRI(1)=30.-PRIG
PHI(2)=PBIG+30,

RETURN

END

212
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(12). Test problem #12 used by Eason and Fenton [40].

GENERAL INFORMATION:

4 Variables

8 Variable bounds
0 =2 3 £ 150 0 = X4 < 100
0 = X, 2 50 0 = X, £ 100

STARTING INFORMATION:

§§'= [136, 0, 74.8, 75.5]

f(§;) = .36733873

SOLUTION:

x* = [136.00762, .031371415, 73.594390, 72.187426])

£(x*) = .35845660

COMMENTS: This problem involves guiding a light weight
assembly-line tool along a specified path. The crank is
rotated in 10° intervals at a constant angular velocity
and the objective function is the sum of the squared
deviations of the generated points to the desired ones,
and a function of the link lengths.
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FUNCTION LISTING FNR PROBLEM #12

FUNCTION F(X)
DIMENSION X(1)sXPT(36)rYPT(36)

DATA XPT/113.9110.171046.29101.3»95:4,88,8s81.6974,766.1958.4951.»
144,3938:7934.5r32,4932:.9936,4242:.8¢r50:9959:165:.8¢71.5¢76.5+81.1,

2854.6990.2994.6998.99103.9106.79109:97112.5v114,4,115.5,115.7,114,

12

52
95

3P/79sYPT/40:29446:8953:3¢59:42654049:¢9973:¢9976:9978:.99798279:7+78.5
476:95973:6170:20864960.92154:.3745.893641926:5718:1911.456.292.6»
503'“07!“06!07!301!604!1005!15059210!2701!3306/

DATA POsQROrRO2S80/90470¢90490./

DALPHA=3Z.141527/18.

SUM=0,

P1l=X(1)

Ql=X(2)

R1=X(3) .

S1i=X(A)

DO 54 I=2y34

ALPHA=DALFPHAX(I-1)

CA=COS(ALFHA)

SA=8IN(ALFHA)

PI=P1XCA-Q1%XSA+FO0%X(1.~CA)+QR0%XSA
QAI=P1%XSA+Q1%XCA+Q0%X(1.,-CA)-FOXSA
A=ROXS1-SOXR1-Q1XRO+FIXSO+FPIXQALI-F1IXQI+QIXRI-PIXS1
B=-ROX¥R1-S0%XS81+P1XkRO+Q1XSO0-P1XPI-Q1XQI+PIXR1+AI%XS1
C=-R1XRO-S1XSO+PIXRO+QRIXSO+F1%XR1+Q1%S1~(P1X¥P1+Q1XQA1+FPIXFI+
1 RIXQI)>»/2.

AABB=AXA+EXB

IF(AABB.LT.1.E-30) GO TO S50

TEST=C/SART (AARB)

IF C(ABRSC(TEST).B8T.1.> GO TO 51

“J=1

PH=ASIN(TEST)-ATAN(B/A?

SF=8IN(FH)

CP=COS(FH)

RI=R1¥CP~S1XSP4+FPI-F1XCP+Q1XSP

SI=R1XSP+S1XCP+QI-F1XSF-Q1%CP

TEST1={R1-RO)XX2+(S51-S0)%%x2

IFC(TEST1.L.T.1.E-10) TEST1=1.E~10
IF(ABRS((TEST1-(RI-RO)XX2~(SI-S0)X%2)/TEST1).LT.0.001) GO TO 53
IF(J.EQ.2) GO TO 51 '
TEST=~TEST

J=2

GO TO 52

S50 FH=-ATAN(R/A)

o1
o3
54

GO TO 55

F=1.E20

RETURN
CALCX=XPT(1)XCP-YPT(1)XSP+FI-P1XCP+Q1%XSP
CALCY=XPT{(1)XSP+YPT(1)XCP+RI-F1XSP-Q1XCF
SUM=SUMT+ (CALCX-XPT(I) ) %xX2+(CALCY-YPT(I))X%2
SAL=(R1-RO)IXX2+(81-50)%%k2+(R1-P1)XXk2+(S51-0G1)%k%2
i +(P1-PO)YXX2+(Q1-R0)%K%2
F=8UM/100,+SQL/62500.

RETURN

END
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{13). Test problem #13 used by Eason and Fenton [40].

GENERAL INFORMATION:
5 Variables
4 Functional inequality constraints
3 Variable bounds

15 2 x, 2 20

>
1 22

Xs
STARTING INFORMATION:
X_ = [15, 9.05, 6.14, 4.55, 3.61]

o
f(xo) = ,2802

gl(xo) = 5.95 g3(xo) = 1.59
gz(xo) = 2,91 g4(xo) = ,94
SOLUTION:

x* = [15.2632, 8.63583, 6.34419, 5.12674, 4.36837)
£(x*) = .2679

No constraints active,

COMMENTS: This problem concerns modifying the gear ratios
for a five speed automotive transmission in order to
accelerate from rest to 100 MPH in minimum time.

The problem was modified in that the interpolation of
torque values for engine speed was replaced by a series
of cubic least squared error fits. This change was made
to avoid the time consuming interpolation.
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FUNCTION LISTING FOR PROBLEM #13

FUNCTIDN F(X)
DIMENSION X(1)sRPM(1)yTORQUE(1)
DATA RADyCON1yCON2yRFMIN'RPMAXsEI»VIrDTsVMAXsVO» TSHIFT» THAX/
1 1.08591.466667+12.90842¢600,95700.9:600:98.9.01,100.
2 15:2¢25¢100./
13 IT=0
ACC=0.0
V=Yoo
I=]
302 FORCE=.0293%VXk%2+31,.2
301 RPM(1)=UXCON2X{X(I))
IF(RFM(1).LT.RFMIN) GO TO 300
IF(RFM(1).GT.RFMAX) GO TO 305
IF(RPM(1) .GE.RFMAX) GO TO 305
IF(RFM(1).GE+400. AND.RFM(1).LE.1900.,) TORQUE(1)=
1 00000003846154XRFPM(1)%%3~,0002108974359%XRFM(1)X%24
2 ,42455128205133%XRFM(1)~-187.115384461540295
IF(RPM(1).GE+1900.,,.,AND.RFPM(1) .LE.3000,) TORRUE(1)=
1-,00000000492424%XRFPM{1)%X%X3+.000018B467424242%XRFM{( 1) %x%X24+
2 +01229545454547XRFM(1)4+64.999999999984
IF(RFPM(1).GE+3000, . AND.,RFM(1).LE.A500.) TORQUE(1)=
1 =,0000000002446867%XRFM(1)X%X3+.000003%RFM (1) kK2~
2 +01263333333336%XRFM(1)+155.,10000000002947
IF(RFPM(1).GE+4500, .AND.RFM{(1).LT.54600.,) TORQUE(1)=
1 -+00000000644141XRPM(1I%XX3+.00008337626263XRPM(1)%X%X2-
2 +3435184684688129%RPM(1)+597.36346363847145
IF(RPM(1) +GE+3400, AND.RFM{(1).LE.6000.) TORQUE(1)=
1 ~+0000000253948IXRFM(1)%X%X3+.,00038158730157KRPM{1)k%2
2 ~1.9223492062348%XRPM(1)+3380,866464645715304
ACCO=ACC
ACC=RADX(X(I)XTORQUE(1)~FORCEXRAD)/(EIXX(I)>XX24VI)
IT=IT+1
T=DTXIT
VU=V+(ACCO+ACC) /2. XDT/CON1
IF(T.GT.TMAX) GO TD 311
IF(V.GE.VMAX) GO TO 311
GO TO 302
300 F=TMAX
RETURN
305 I=I+1
IF(T.EQ.0.) GO TO 301
TT=T+TSHIFT
306 ACLC=-FORCEXRADXX2/VI
IT=IT+1
T=DT+IT
V=V+ACCXDT/CON1
IF(T.LT.TT) GO TO 307
GO TO 302
307 FORCE=,0293%V%xV+31.2
GO TO 306
311 F=T/100.
RETURN
END
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CONSTRAINT LISTING FOR PROBLEM #13

SUBROUTINE CONST(X»
DIMENSION X(¢1),PHI(

PHI(1)=X(1)-X(2)
PHI(2)=X(2)-X(3)
PHI(3)=X(3)-X(4)
PHI(A)=X(4)~X(5)
RETURN

END

NFHI»PHI)
1)
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(14). Test problem #2 used by Colville [27].

GENERAL INFORMATION:
15 Variables
5 Functional inequality constraints

10 Variable bounds xj 20 j=1,2,3, ..., 15

STARTING INFORMATION:
x = .,0001 j=1,2, «e.,15, j#7; x = 60

f(i&) = =2400.011

g, (x_) = 45.00605 _
B g4(xo) = 42,00230
gz(xo) = 33.00380 !
_ g5(xo) = 48,00408
g3(xo) = 23,99590
SOLUTION:

X = fo, 0,5.1736360, 0, 3.0612393, 11.8389158, 0, 0,
.10376918, 0, .3000238, .33343802, .40002035,
.4282753906, .223971045]

£(x*) = 32.3486790

Constraints #1, 2, 3, 4 and 5 are active.

COMMENTS: This problem is the dual to problem #1 of the
comparative study.
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FUNCTION LISTING FOR PRNBLEM #14

FUNCTION F(X)

DIMENSION X(1)

COMMON/COF/7AC1035)sB(10)yC(SeS)»D(S)»E(S)

DATA (C(I)rI=1+25) /30:9~20:9-10:932:2=10,9=20,03Ps5~b¢r
1-314932¢e9+1049=64710e9=64s7r=10:232:9~31 4962374 7-2049~10.+»
2320!'100!‘200!30-/

DATA (BC(I)rI=1910)/~40492~249=e259-449=849~1,9-40:9-60495:r1./

DATA (DCI)9yI=195) /4498+r10:496492./

Ui1=0.0

u2=0.0

U3=0.0

DO 100 I=1,10

Ul=R(IDXX(I)+UL

100 CONTINUE

RO 101 J=1,5

0 101 I=1,5

U2=C(I s I XX(104+T 2 XXC10+0)+U2

101 CONTINUE
DO 102 J=1,5
U3=D(IIRkX{10+J) %%34+U3
102 CONTINUE

Fa-(U1-U2-2,%U3)

RETURN

END
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CONSTRAINT LISTING FOR PROBLEM #14

SUBROUTINE CONST(XrsNCONS»CON)
DIMENSION X(1)sCON(1)

COMMON/COF/ AC10¢S)+B(10)rC(S5e3)sD(S)LE(S)

DATA (ﬂ(I)II=1!50) /“160'00!'305!00lOolzo!‘lol“lovlollo!
124 9=2:49042~249=947009=149=2:722491 4704704724209 ~24v-4,5-1,4)
2343301047179 009=4491er0er=10r=2:94:s91490:472:4700r~1,4»
3-2:820e9=~14r-1495:901./

DATA (EX(I)»I=195)/~18,49-2749-36+9-1849-12./

DATA (D(IXsI=195)/4,.98.910.rb64+22./

DATA (C(I)»I=1925) /30:+9=20¢9=10:9232:.9~=1049-20+¢3P07~bsy
1“31-!320!-100!“60llOo!“601“1007320!-310!-6093909“200!"1009
232;!‘100!“200!300/

DO 100 J=1,5

C1=0.,0

DO 101 I=1.95

Cl1=C{I»J)XRX(104I)+C1

101 CONTINUE

C2=0,0

DO 102 I=1,10

C2=A(I» J)XXCI)+C2

102 CONTINUE

CON{D=EC) 42, XCL1+3  XDC I RX (104 I3 %K2-C2

100 CONTINUE
RETURN
END
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(15). Test problem #7 used by Colville [27].

GENERAL INFORMATION:
16 Variables
8 Equality constraints

32 Variable bounds 0 = xj =5 §=1,2,3, ¢..,16

STARTING INFORMATION:

xo = 0 j =1'2,3, 100,16
3

f(xo) = 46.0

hl(xo) = =2.5 hs(xo) = -1.3

hz(xo) = -1.1 hs(xo) = -2.1

h3(xo) = 3.1 h7(xo) = -2.3

h4(xo) = 3.5 ha(xo) = 1.5
SOLUTION:

x* = [.03981344, .79197966, .2029019, .84431475,
1.26985898, .934787236, 1.68198142, .155235257,
1.5678912575, 0, 0, 0, .66016359, 0, .674293038, 0}

£(x*) = 244.89969778
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FUNCTION LISTING FOR PRNBLEM #15

FUNCTION F{(X)
DIMENSION X(1)sA(146+164)

DATA (A(I)2I=1¢256)/1:4904970¢20:90:470¢70:90:90.70490.7»
109!00!00lO;rOo'Oo'l.vOo!Oo!OoIOQIO.!O.!O.!00!0.!00!00!00!00!00'
200!10!10IOo!°0'00!°0’00’00!00!0.!00!00!00’00!00!
310’00!00!1-!00900!00!00'00!00'00!00'00!00'0.!00!
40;!00'00!00!1-!00'0;’0.!00!00!00!00!00!00!00!0.!
500'00!00!00!10!10!00!00'00'0-!0.!00900!00!00!0.!
610'10'10!10!00!00!10I00!00700!00I00!00!00DOoIOQ!
7109049049204 90:921470:71420¢90490420.20:4204920420,7r
800!00!10!00ro.IOQ’00!00!1&!00!0.!00'00'09!00!00!
900'10!10!00'1.!00!00!10!00'10!00!00!00!00!0-’0.!
900!00!00!10?00!00!10!00!00!00!10!00!00POQ!O.!O.!
100!0.’00!00Ilo!Oo’Oo'Oo'lo!Oo!Oo!10'00!00!00F00'
206200706700 7046704921.970¢70:90:491,70:21,470¢20.90.»
3047049149200 90:706704204704914904s71:910r1490.20.»
40470.70471490:72490e91490¢70420470470,90471490.»
510!00!00!0.rio!Oo!00vo.rlol00!00500!°o!0.900v10/

F=0,0

Do 100 I=1r16

F1=2=X(I)XX(I)+X(I)+1.,

DO 100 J=1,16

FQReXC(NEAX(DEX(II+1,

F=A(I+J)XKFL1XF24+F

100 CONTINUE

RETURN

END
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CONSTRAINT LISTING FOR PROBLEM #15

SUBROUTINE EQUAL (XyCONsNEQUS)
DIMENSION X(1)rCON(1)»B(Br16),C(B)

DATA (B(I)sI=1r12B8)/:22v-1:4691:299-142904190491,12¢0.>
102!00!-089!_1006!00!‘1072!00!.45!019l-1030!00!0959001“033!
2009426942091 48290494549 -1:435047:31y~1419+15+~1,15)
3-1.16100!1051!1062'0'70597011!00!_0961_10781059!1024700!00!
4,129 ¢89009=0419~4339:2151,129~1,0372:139049~44920:r=0439~ 126y
SOI'01'10'00'00'00’0"00'_036700'0"10’00’00700'00’00'00'
60¢70:71+4704620:470490470420.90,70471470490470:.20.»
704904904700 714204920¢70:¢904970470490¢900914v04s90.r
BO.!O.!00!00!00!00'1090-!00!00'00'00!00!00!00!10/

DATA (CCIdrI=1rv8) /2:891:19~3:1r-3:591:392:122:39r~1.5/

PO 100 I=1,8
CON(I)=0.0
N0 101 J=1r,16
CONCID=B(Ir»J)XX(J)+CONCI)
101 CONTINUE
CON{(I)=CONCI)-C(I)
100 CONTINUE
RETURN
END



(16). Test problem #8 used by Colville [27].

GENERAL INFORMATION:
3 variables

14 Functional inequality constraints

6 Variable bounds 0 = X = 2000 ;
0 = x, £ 16,000 ; 0 = x5 £ 120
STARTING INFORMATION:
§6 = [1745, 12000, 110]
f(§6) = -868.645762
gl(xo) = ,.390342104 gB(xo) = ,.332668903
g,(x,) = .013043417 gg(xo) = 355.105637
ga(xo) = ,049385745 90 (%X,) = -109735908
g4 (X,) = .040883997 gll(xo) = ,002141772
gs(xo) = .037798404 glz(xo) = ,103021254
gs(xo) = ,023471730 913(xo) = 3048.28948
g7(xo) = 1.66932439 914(xo) = 1973.91317
SOLUTION:

X* = [1728.37078, 16000, 98.1323813]
£(xX*) = -1162.0363352

Constraints #2 is active.

224

COMMENTS: This is a process optimization problem developed
by Colville. The constraints were scaled to allow for better

convergence to the solution.
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FUNCTION AND AUXILIARY SUBROUTINE
LISTING FOR PROBLEM #16

FUNCTION F(X)

DIMENSION X(1)+Y(8)

CALL SUPPLE(X»Y)
F=0,063KY(2)RY(5)=5.04%X(1)~3:36XY(3)~0,035kX(2)~10.%XX(3)
RE;URN '

EN

SUBROUTINE SUPPLE(X»Y)

DIMENSION X(1),Y(1)

Y(2)=1.,6%X(1)

Y(3)=1,22KY(2)-X(1)

Y{6)=(X(2)+Y(3))/X(1)
Y2CALC=X(1)%(112.+13,167XY(H)-0.64667%XY(6)%%X2)/7100,
IF(ABS(Y2CALLC~-Y(2))-0.001) 30,30,20
Y(2)=Y2CALC

GO TO 10

CONTINUE

Y(4)=93.0
Y(5)=86.35+1.098%KY(86)-0.03BXY (&) ¥%k24+0,325%K(Y(4)-89,)
Y(B8)=-133.43.XY(3)

Y(7)=33.82~,222XY(8)
YACALC=98000XX(3) /(Y (2)KY(7)+X(3)%1000,)
IF(ABS(Y4CALC~Y(4))-0.0001) 300,3005200
Y(4)=Y4CALC

GO TO 100

CONTINUE

RETURN

END



CONSTRAINT LISTING FOR PROBLEM #16

SUBROUTINE CONST(X»NCONSyCON)
DIMENSION X{(1),CONC(1)rY(8)
CALL SUFPLE(X»Y)
CONC(1)=(5000.~Y(2)) /5000,
CON(2)=(2000.-Y(3)>/2000,
CON(3)=(Y(4)~-85.,)/85.
CON(A)Y=(93.-Y(4)) /93,
CON(S)=(Y(5)~20.)/90.
CONCAI=(95.~-Y(5)) /95,
CONC7)=(Y(8)-3.)/3,
CON(B)=(12.~Y(6))/12.,
CON(?)=(Y(7)~0,01)/0.01
CON(10)=(4.-Y(7))/4.
CONC11)=(Y(8>~145,)/145,
CONC12)=(162,-Y(8) ) /162,
CONC13)=Y(2)

CONC14)=Y(3)

RETURN

END

226
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{(17). Test problem #1 used by Dembo [46].

GENERAL INFORMATION:
12 variables
3 Functional inequality constraints

24 Variable bounds .1 = xj £ 100 3=1,2,3, vo.,12

STARTING INFORMATION:

xo = 4.0 j=1'2,3' --.,12
j
f(i&) = ,227682649
gy (%) = .199810679 _
gq (X)) = -.754318463
g, (x_ ) = ~.757076016 ©
SOLUTION:
x* = [2.6631947068, 4.517277762, 7.133802907, 2.237268448,
4.07840382657, 1.31827569, 4.125187034, 2.856195978,
1.6765929748, 2,1789111052, 5.12343515, 6.659338016]

£(x*)

3.16859000
Constraints #1, 2, and 3 are active.
COMMENTS: The problems involves a multiphase chemical

equilibrium calculation. The scaled version of the problem
was used.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #17

FUNCTION F(X)

DIMENSION X(1)

DIMENSION A(11)

DATA A/-+00133172y-,002270927y~,0024854469-4.67v~4.671973»
1 -,0081409-,0080929~,0059-,000920%,-.00088y-.0011%/
F=1.00E+05

D0 10 I=1,11

TEMP=X(I1)

IF(X<I)+LT+1.0E~15) TEMP=1.,0E~15

F=FXTEMPXXAC(I)

RETURN

END

SUBROUTINE CONST(XrNPHI»PHI)
DIMENSION X(1)»PHI(1),C(30)
DATA C/0.367373E-0292,1863746E~02¢9:7733533E-02¢6.6940803E-03y

1 1.0E-06+1,0E~05r1.0E~0671.0E-10y1,0E~-08,1,0E-02+1.0E~04»

2 1.,0898645E~01+1.6108052E-04y1.0E-23v1.9304541E-06y1.0E-03»

3 1.0E-0671.,0E~05¢1.0E~-06¢1,0E-0?¢1.,0E-09¢v1,0E-0351.0E-03,

4 1.0898645E-01+1.6108052E-05+1.0E-23+1,.9304541E~08+1.0E-05,

9 1,11684059€E-04+1,0E-04/
PHIC1)=1.0=-CC1)%X(1)-C(2)XX(2)-C(IIXX(I)~C(4)XX{(4)%X(D)
PHIC(2)=1,0-C(O)XX(1)-CL{OINX(2)~C(7IXAX(I)-C(BIXX(4)%XX(12)-C(P)X

1 X(3)/X(12)-CC10MIXRX (A /X(12)~C(11IRX(7)%RX(12)~C(12)%kX(4)%kX(F)~

2 COIIIRXC2IRX(SI/XLI2)-CCL1A) XX (2)%KX(4I%AkX(5)~C(15)XX(2) /X (4)%kX(5)

3 /XCL2)k%2-C(16IXX(10)/X(12)
PHI(3)=1,0~C(17)%kX(1)-C(18)¥X(2)-C{12)%X(3)~C(20)%kX(4)-C(21)%X(5)

1-C(22IKX(E)=-C(23)AX(BI-C(24) XX (4)RX(F)~C(25) (kX (2)%kX(5)~-

2 CCEIXAX(2IRX(AIXRX(T)-C(27)kX(2I%X(F)/X{(4)-C(28)%X(9)-

3 C(29)RX(1)H)%X(P)-C(30)r%X{(11)

RETURN
END
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(18). Test problem #3 used by Dembo [46].

GENERAL INFORMATION:
7 Variables

14 Functional inequality constraints

14 vVariables bounds 1 = Xy 2 2000
1= X, <120
1= X4 2 5000
85 = X, = 93
90 = Xg £ 95
3 = Xe s 12
145 2 x9 S 162

STARTING INFORMATION:

§6 = [1745, 110, 3048, 89, 92.8, 8, 145]

f(§6) = 2125.6598

q1(§6) = ,0153948067 gg (X ) = .0080782000
92(26) = ,0101274528 gg(ﬁs) = ,0132200000
g3(§6) = .0144536405 glo(Es) = .530463480
g4(§6) = .0110454741 911‘55’ = .087631602
95(55’ = .0095946752 g12(§6) = ,061639448
g6(§6) = .0128187200 913(50) = ,250847500
g,(x ) = .0066451185 914(26) = 6.86844699
SOLUTION:

x* = [1698.10594, 53.7010394, 3031.2343436, 90.1147228,
95, 10.49405556, 153.53535167]

£(X* = 1227.2272509

Constraints #1, 3, 6, 7 and 9 are active.

COMMENTS: The problem involves an alkylation process
optimization.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #18

FUNCTION F{(X)

DIMENSION C(6)»X(1)

DATA C/1.715+.03594,0565910.0¢3000,09-,063/
F=COL)XX(1)HCC2IRX(1IRXCEIFC(IIRX(II+C (A RX(2)+C(TFI+C(S) %X (3)%kX(5)
RETURN

END

SUBROUTINE CONST(XsNPHI+»PHI)
DIMENSION X{(1),PHI(1),C{(38)
DATA C/59553571E~02, .883928579~:11756250+1.1088» .1303533,~,0064603
Jr+b6617326PE-039417239878BE-019~456595559E-029~.19120592E~01

1 3685073E10291,087025 + 321759 ~.03762¢,0061985 . 24623121E1+04y
=e25120634E+02y +161189946E40395000.9-,48951E+067y 1 44333333E102,
+337.+02205569-4,007595r+00081»~40005r .81946729.819672524500,9r-2504¢
+10204082E~01y +122448B98E-04, + 00004250 . 000042505 -, 000074251 .22,
1,0-1.0/
PHI(1)=1,0-C(1)%RX(6)KX(E)~C(2IKX(I)/X(1)-C(3I%X(b)
FPHI(2)=1.0-C<A)%kX(1)/X(3)~C(SIRX(LI/X(BIXRX(E)-C(EIXRX(1I/X(3I%X(4)
1 XX(6)

PHI(3)=1,0-C(7)XX(4)KX(S)-C(BIXRX(T)-C(PIXX(4)~C(10I%KX(4)
PHI(4)=1,0-C(11)/X(5)~CC12)/X(T)AX(S)-C(1II%kX(A)/X(H)-C(14)/X(5)
1 kX(6)%X(8)
PHI(S)=1,0~C{15)%kX(7)~C(16IRX(2)/X(3)/X(4)~C(1721kX(2)/X(3)
FHI(A)=1.0-C(18)/X(7)-C(1PIXRX(2)/X(F)/X(7)-CC20IKX(2)/X(3)/X(4)
1 /7X(7)

PHIC(7)=1,0-C(21)/X(3)-C(2R2)%RX(7)/X(5)
PHI(B)=1,0-C(23)%X(5)-C(24)%X(7)

PHIC(9)=1.,0-C(25)%X(3)-C(26)%X(1)
PHI(10)=1,0~-0(27)%X(1)/X{(3)~-C(28)/X(3)
FHI(11)=1.0-C(29)%KX(2)/X(3)/X(4)-C(30I%X(2)/X(3)
PHI(12)=1,0~C(31)%X(4)~-C(32)/X(2)%kX(3)I%RX(4)
PHI(13)=1.,0-C(33)KX(1)XX(4)-C(34)%X(1)~-C(3T5r%kX(3)
PHI(14)=1,0~-C(36)/X{1)XkX(3)-C(37)/X(1)~C(3BI%X(H)

RETURN

END

UMD LGINM



(19). Test probliem #4 used by Dembo [46].

GENERAL INFORMATION:
8 Variables
4 Functional inequality constraints

1l6 Variable bounds .1 = xj £ 10

STARTING INFORMATION:

§6 = [6,3,.4, .2,6, 6,1, .5]

f(is) = 3.65736570

g, (X)) = .04720000 g5 (x)
gy (x,) = =.07640000 g, (x,)
SOLUTION:

§*

231

§=1,2,3, «0.,8

-.099050230
-.416644828

= [6.465036554, 2.23275840, .6674155016, .5957723857,

5.932688789, 5.52724000, 1.0133420, .400676365]

f(x*) = 3.951163444

Constraints #1, 2, 3 and 4 are active.

COMMENTS: The problem involves the design of a reactor.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #19

FUNCTION F(
DIMENSION X

A=1.,0E-15 .
IF(X(1)+BT+A+AND+X(2) GT+AANDX(7) +GT.A+AND.X(B) .GT.+A)

1 GO 7O 10

F=1.0E%S

RETURN

10 F=0,4%kX(1)KK. OG7XX(7IRK (=0 67)+0. ARX(2) KK 67KX(B)KK(~+67)+10,0~X (1)

1 -X{2)

RETURN

END

X)
(1)

SUBROUTINE CONST(XsNPHIsFHI)
DIMENSION X(1)>yPHI(1)
PHI(1)=1.,0-0,0588%kX(S5)%kX(7)-0.1%X(1)
PHI{(2)=1.,0-0.,058B%kX(5)%X(B8)-0.1%X(1)-0,1%X(2)
IF(X(3),6T.,1.0E~-15) GO TO 4
FHI(3)=-1,0ES
GO 10 S
4 FHI(3)=1,0-4,0%XX(3)/X(5)=2,0%kX(3)%kK(~:.71)/X(5)—-,0588%X(3)
1 XX(~1.3)%X(7)
9 IF(X(4).6T.1.0E-15) GO TO 6
FHI(4)=~1,0ES
GO TO 7
6 PHI(4)=1.0-4.0%kX(4)/X(6)-2.,0%X(4)%K(~,71)/X(6)-,0588%X(4)
1 Xk(-1.3)%X(8)
7 RETURN
END



(20). Test problem #5 used by Dembo [46].

GENERAL INFORMATION:
8 Variables
6 Functional inequality constraints

16 Variable bounds

10000 = Xy & 100 1000 = Xg < 10
10000 = x, £ 1000 1000 = Xg <10
10000 = Xy £ 1000 1000 = Xq £ 10
1000 = x, S 10 1000 = Xg < 10

STARTING INFORMATION:
EQ = [5000, 5000, 5000, 200, 350, 150, 225, 425]
,f(ié) = 15000.0

gl(xo) = ,222222439 g4(xo) = ,125
gz(xo) = ~.05555556 gs(xo) = ,0625
=y - -15 -\ _
SOLUTION:
x* = [579.179816, 1359.9511, 5110.11713, 182.00710,

295,595315, 217.992897, 286,411787, 395.595315)
£(x*) = 7049.248049

Constraints #l1, 2, 3, 4, 5 and 6 are active.

COMMENTS: The problem involves the design of a heat
exchanger.

233
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #20

FUNCTION F(X)
DIMENSION X(1)
F=X{1)+X(2)+X(3)
RETURN

END

SUBROUTINE CONST(XsNPHIyPHI)

DIMENSION X(1)sPHI(1),C(16)

DATA C/833.33252,100.,0,-83333,3335,1250.091.0+-1250,0,1250000,0
1 v1.0»-2500:05.0025y.0025y.0025y.0025¢-.00255,015~,01/
PHI(1)=1,0-C(1)/X(13%XX(4)/X(6)-C(2)/X(6I~C(II/X{1)/X(b)
PHI(2)=1,0~-C(4)/X(2IRX(S)/X(7)~C(SIKX(4)/X(7)=C(EI/X(2)%X(4)/X(7)
FPHI(3)=1,0-C(7)/X(3)/X(B)-C(BIXX(T)/X(B)-C(PI/X(IIRX(T)/X(B)
PHI(4)=1.,0-CC10)%X(4)-C(11)%XX (&)
FPRI(S5)=1,0-C(12)%X(T)-C(13)%kX(7)-C{(14)%X(4)
PHIC(6)=1.0-C15)XX(B)-C(16)%X(5)

RETURN

END



(21). Test problem #6 used by Dembo [46].

GENERAL INFORMATION:
13 vVariables
13 Functional inequality constraints

26 Variable bounds

L2x 5.1 1000 < xg £ .1

1sx, 5.1 1000 < xg £ 500

15 %55 .9 500 S x,5 S .1

1 2 x, % .0001 150 £ x;; <1

9 S x. 8 .1 150 £ x,, S .0001

9 % xS .1 150 < x,, < .0001
1000 < x, £ .1

STARTING INFORMATION:

EB = [.5, .8,.9, .1, .14, .50, 489, 80, 650, 450, 150,
150, 150])

f(xo) = 450.0

gl(i) = .654881867 - -14

- gg(X) = 1.421 x 10
g, (X) = -.20370813 _

_ gg (X) = -.012500000
g5 (X) = .535981300 - _

_ g0 (¥) = .111111111
g, (X) = .066000000 -

- 911 (X) = .375000000
g5 (X) = .075745000 —

_ 9,5 (X) = .182000000
gg (X) = -.181711949

.363125000

_ gy3 (%)
g7(x) = .027600000

SOLUTION:
x* = [.80377316, .9, .944411275, .1, .190821994,

.304576338, 574.085832, 74.0858325, 500.00746,
-1, 20.2353465, 77.3430724, .01]

235
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(21). {(cont'd)

£(x*) = 97.5884189
Constraints 41, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13
are active.

COMMENTS: The problem is a mathematical programming model
of a three~stage membrane separation process.
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FUNCTION AND CONSTRAINT LISTING FOR PROBLEM #21

FUNCTION F(X)
DIMENSION X(1)
F=X(11)4X(12)+X(13)
RETURN

END

SUBROUTINE CONST(XsNPHI,PHI)

DIMENSION X(1)sPHIC(1),C(36)

DATA C/1.2626269-1,23105911.24286269~1,23105991.246262469~-1.231059»
1 0034750!0975!—000975!0034750!0975'“0009750’1009100!“100'0002!
2 002214071409 ~40029~000291.07140¢50009~1:07=50047¢92,002¢~,002
3 1:¢0r1:0r+002¢—40025.03475y.9752~.00975/

FPHI(1)=1,0-CC1)kX(B)/X(11)-CC(2YRN(LIRX(BY/X(11)

PHI(2)=1,0~C(I)XX(P)/X{12)-C(4IAX(2)%RX{(PI/X(12)

FHI(3)=1,0~C(HIXX(10)/X(13)=-C(HIXX{(II%RX(10)/X(13)

FHI(4)=1,0-C(723RX(2)/X(S)-C(BIKX(2)-C(PIRX(2IKX(2)/X(D)

PHI(S)=1,0-CC10)KX(3)/X(E)=CCL11IKX(I)~C(12I%AX(TIRX(I)/X(4)

PHIC(S)=1.,0~CC13)(XC1)/X(SI/X(7IRX(BI-C(14)KX(4)/X(5)

1 ~CO1S5IRX(4)/X(DI/X(2)%X(8)
PHI(7)=1,0-CC18)KX(2IRX(P)~C(L17I%X(5)%X(B)-C(18)%X(4)

1 -C{1PIRX(5)~C(20)KX(1IRX(B)-C(21IRX(AHIKRX(P)
PHI(8)>=1,0-C(22)/X(2)KX{3)/X(PIRX(L0)-C(2I3IRX(E)/X(2)

1 ~C(248)/7X(P)~L(25)/X(PIXX(L0I=CC(286)/X{2IKX(HI/X(P)
FHI(?)=1,0-C(27)/X{2)~C(2BIXX(10)-C(29)/X(2)%kX(3I)%X(10)
PHI(10)=1.0-C{30X%kX(2)/X(3)

PHIC11)=1,0-C(31)%X(1)/X(2)

PHI(12)=1.0-C(32)XX(?2)~-C(33)%X(8)

PHIC(13)=21.0-C{(34)KX(1)/X(A)=C(ISIAX(L)~C(IHIRXCLIRX(L)/X(4)

RETURN

END
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{(22) . Test problem #7 used by Dembo [46].

GENERAL INFORMATION:
16 Variables
19 Functional inequality constraints

32 vVariable bounds

.1 £ Xy .9 i Xq .9
.1 5 X, £ .9 . -1 Xy 0 2.9
.1 = x3 £ .9 1l = xll £ 1000
.1 5 X, s .9 .000001 s X) 4 £ 500
.9 = x5 £ 1 1 = x13 s 500
.0001 = Xg = .1 500 =2 X) 4 £ 1000
.1 =2 X £ .9 500 = X5 £ 1600
.1 = x8 .9 .000001 = x16 2 500

STARTING INFORMATION:

x =1[.8, .83,.85, .87,.90, .10, .12, .19, .25, .29, 512,
° 13.1, 71.8, 640, 650, 5.7]

f(§6) = 284.739749

g, (X ) = .004400000 ) o 03100
g;, (¥,) =-.0340896550

92(26) = .006368958 _
_ 912(xo) = ,0022000000
93(xo) = ,052865132 _
_ gl3(xo) = ,9744140620
g4(xo) = .060339100 _
- 914(x°) = ,0333333333
gs(xo) = ,041887931 _
—_ gls(xo) = .0229885700
gG(xo) = ,017415364 _
- glﬁ(xo) = ,0235294148
97(xo) = =,021515790 _
_ gl7(x°) = .0361445783
gs(xo) = =,11609600 _
_ ng(xo) = .1379310340
gg(xo) = «,14338235 _
glg(xo) = ,2400000000

910 (%,) = -15354377
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{22). (cont'd)

SOLUTION:
x* = [.80377316, .81611713, .9, .9, .9, .1, .10703686,
.19083674, .19083674, .19083674, 505.04987,

5.0498694, 72.636801, 500, 500, .00001]
£(x*) = 174.786995
Constraints #1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
14, 15, 18 and 19 are active

COMMENTS: The problem is a mathematical programming model
of a five-stage membrane separation process.
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FUNCTION AND -CONSTRAINT LISTING FOR PROBLEM #22

FUNCTION F(X)
DIMENSION X(1)

DATA ArB/1.2626269-1.231060/
FAX(X(12)4X(13)4X(14)+X (150 +X(16) Y +BR(X(1I%X(212)+
1 X(2)RXC13)EX(IIRX(14)+X (A2 RX(1T)+X(S5)%kX(16))
RETURN

END

SUBROUTINE CONST(XsNFHIyPHI)

DIMENSION X(1)sPHI(1),C(51)

DATA C/.+03475y 49799+ 00973y ¢ 034759 :9759 -+ 009759 . 03475,

1 +9759r~400973594034757 497514009759 ,03475r 49759400975+ 1.0y
2 100!“100!100!000290002!-00027-0002!100I0002!c0029100!"0002!
3 ~000291:091:09500.09-500,0r-1:071:021,0¢500,09-1,0¢-500,0¢
4 09'0002!-000270002'“0002!100!100!100!100r100!1007100/
PHIC1)=1,0-CC1)YXX(1)/X(6)-C(2I%X{(21)~C(IIXXC(1IXRX(1)/X(b)
PHI(2)=1,0-C(A)XRX(2)/X(7)-C(SIRX(2)-CCOHIXRX(2IKX(2)I/X(7)
PHI(3)=1,0-C(7)%X(3)/X(B)-C(BIXRX(I)-C(PIRX(IIAX(3)/X(8)
PHI(4)=1,0-C(10)XX(4)/X(P)~CCL1L1)%RX(4)~C{12)%kX(4)%KXC4)/X(?)
FHI(S5)=1,0-C(13)XX(5)/X(10)~C{14)XX(T)-C(1S)RX(TIXX(S5)/X(10)
PHI{A)=1,0-CC1A)IXX(E)/X(7I=CCL17IXXC1I/X(7)/X(11)%X(12)~-C(18)%
1 X(H)/X(7)/7XT11)%RX(12)
PHIC(Z)=1,0-C(1P)XX(7)/X(B)-C(R20IXX(7)/X(B)XX(12)~C(21)%X(2)/
1 X(B8XXX(13)-C(22I%kX(1F)-C(23)XX(1)/7X{(BIXRX(12)
PHI(8)=1,0-C(24)XX(8)~-C(25)XX(8)XX(13)-C(26)1 %X (3)%AX(14)~-C(27)X%
2 X(?)-C(28)kX(2IXKX(13)-C(29X%kX(2r%kX(14)
FHI(?)=1,0-CC(30)XXL{P)/X(3I)-CCILI/N(IIRX(A)/X(14)%kX(15)-C(32)/
1 X(3)%X(10)/X(14)-C(33)/X(3IRX(PI/X(14)~C(34)/X(3r%X(BI)/X(14)
2 XX(15)
PHIC(10)=1,0-C(3T)/X(A)RX(T)/X(1GI¥X(16)-C(F6)/X(AI%XX(10)~

1 C<(37)/X(15)-C(3B)/X(15)%kX(16)-C(IP)I/X(A4)%XX(10)/X(15)
PHI(11)=1,0-CC40)/X{4)-C(A1I%XX(146)-C(42)/X{AIXAX(SIXKRX(16)
PHI(12)=1,0-C(43)%X{(11)-C(44)%X(12)
FHI(13)=1,0-C(45)/X(11)%X(12)

FHI{(14)=1,0~C(46)%X(4)/X(5)

PHI(15)=1,0-C(47)%X(3)/X(4)

PHI(146)=1,0~-C(48)%XX(2)/X(3)

PHIC(17)=1.0-CC(AP?IXX(1I/X(2)

PHI(18)=1.,0-C(50)%X(9)/X(10)

PHI(19)=1,0-C(51)%XX(8)/X(9)

RETURN

END
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(23). Test problem #8A used by Dembo [46].

GENERAL INFCRMATION:
7 Variables

4 Functional constraints

14 Variable bounds .1 = x:.I 210 j=1,2,3, «v+, 6
< <
.01 = X, 2 10
STARTING INFORMATION:
X, =6 3=1,2,3, ..., 7
J
f(§6) = 2205.86837
gl(xo) = ~369.81882 gB(xo) = =15.9306112
gz(is) = =4,3413695 g4(§6) = ~137.947340
SOLUTION:

x* = [2.8560239, .6108117965,2.150810, 4.71196656,
.99941464, 1.34732658, .0316508066]

£(xX*) = 1809.764787
Constraints #1, 2 and 3 are active.

COMMENTS: This is a prototype geometric programming
problem.
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FUNCTION AND CONSTRAINT LISTINAR FOR PROBLEM #23

FUNCTION F(X)
DIMENSION X(1)

DATA C1+L2sC39CA/10,915.9204925./
ALPHA=-,250
FrCLIXX(1)/X(2IKX(AIRR2/X(E)KEIRX(7)XXALPHA+C2/X(1)/
1 X(2IKK2AX(IIRXCA) /X(SIKRX(7IXR(~oFO)HCIRX(LIRR(~-2IKX(2)/X(4)
2 AX(DIRR(~2IKRXCEIH+CARX (L) RRZ2UX(2I KRS/ XCIIEXX(TIRK SO/ X(H)YXRK2
I XkX(7)
RETURN
END

SUBROUTINE CONST(XsNPHIs»FPHI)

DIMENSION X(1),PHI(1),C(14)

DATA C/4924792¢291 3748934192024 12009:859029039049.,5/
PHIC1)=1,0-CCO1)RXCLIRKS/X(II/XCAYRR2KX(7)-C(RIKXCLIRRIRX(2)/

1 X(I)RR2KX(AIRX(ZIRKS-CLII/X(2IRX(II/XCAIRKSEXCAIRK(2 /3%
2 X(7)%%.25
PHIC2)=1:.0~C{4)/X(LIKXK.SRX(2I/X(IBI/X(GIKX(E)-C{(SHIRX(3)I/X(4)/

1 X(SIKX(OIRK2-C(AI/XCLIRX(2IKKS/X(BIRKD/X(SIAXCEIRKCL/3,)
PHIC(3)=1:0~C(7IRX(LI/XCIIRRCLSIKX(S)I/XCAIRXCTZIRRCL /F:)~C(B)X
1 X(2)/X(BIRKORX(SI/ACEI/X(T7IRRS~CAPI/XCLIRK(2IRX(TI K S5RX(S)
2 ~Cl10)/X(2I%%k2KkX(IIRX(S)/X(EIKX(7)
FPHICA)==-CC11)/XC1IRR2RX(2)/X{A)AX(SIKRKSKX(ZIRK(L /T )~-CC12I%X(1)
1 NOKeSEXC(2IRK2EXCTIKRXCAIRRCL o /30D /XDIRKC2./30IXKX(7I%K%K.25-CC13)/
2 XCLIRXI/X(2)RK2RXCIIAXLSIRXL7) KK 75~C(L1A) /X{TIRR2KX(4) %
3 X(7)%%.50

PHI(4)=1,04+FHI(4)

RETURN

END
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(24) . The welded beam problem.

GENERAL INFORMATION:
4 Variables

5 Functional inequality constraints

3 variable bounds Xy 2 .125; Xy 2 0; X, 20
STARTING INFORMATION:
.EO = [1, 7.4, 2]
f(§6) = 15.81545
gl(iﬁ) = .867852506
= 183.187852

g4(xo)
gs(xo) = ,232850000

1.42500000

gz(is)
g3(§6) = 1.00000000

SOLUTION:
x* = [.24436897, 6.2187934158, 8.29147139, .24436897]
£(x*) = 2.38116476461
Constraints #1, 2, 3 and 4 are active.
COMMENTS: This problem involves the design of a welded
beam structure to produce the minimum cost. The design
variables include the weld thickness, the weld length, the

bar thickness and the breadth of the bar. A complete
description may be found in reference [66].
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FUNCTION AND CONSTRAINT LISTING FOR PRNBLEM #24

FUNCTION F(X)

DIMENSION X(1)
F=1,10471%XCL)RXCLIRXC2)++ 0481 1AX(IIRXCAIR(14.4X(2))
RETURN

END

SUBRROUTINE CONST(XsNPHIyFHI)

DIMENSION X{(1)»PHI(1)

REAL LyLOAD

REAL M»J

L=14, $ LOALD=6000, $ TD=134600. $ SIGD=30000,
F=LOAD

Ti=F/€(1.414%kX(1)%X(2))

M=FXL R (X(2)/724))
R=SART((X(2XKX(2) /4. )+ (X{BI+X(1) ) /2, ) %%k2)
J22e R 707X (1IRXC2IRCIX(2IRX(2I /12 2+ CAX(BIHEXCL1) I /72, )%%2))
T2=MXR/J

COSA=X(2)/(2.%R)

T=80RT(TIXT1+2. XTLRT2XCOSA+T2XT2)
SIG=6.XFXL/(X(A)AX(3)I%KX(3))
FHIC(1)=(TD-T)/10000,
PHI(2)=(SIGD-5IG)/10000,

FRI(3)=X{(4)-X(1)

E=30.E6

EI=EXX(3)KX(4)%X(4)%X(4)/12,

G=12.E6

GI=GXX(3)XX(4I%X(4)%kX(4)/3,

EITC=EIXGJ

EIDC=EX/GJ

REITC=5QRT(EITC)

REIDC=SAQRT(EIDC)
PC=4,013XREITCK(1.-(X(3)/(2.XL))XREIDC)/(L¥L)
PHI(4)=(PC-F)/10000.

DEL=4 , KFXLXLAL/(EXX(4)RX(3IRX(3)%X(3))
PHI(S5)=.23~-DEL

RETURN

END
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(25). Coupler curve problem.

GENERAIL INFORMATION:
6 Variables

4 Functional inequality constraints

6 Variable bounds .5 = Xy £ 3
[ ] >
Xy 205 %320
2 = Xy =10
STARTING INFORMATION:
5:‘0* = {1, 4.5, 4, 5, 3, 3]
f(xo) = 2.3088037
gl(xo) = 2,5 g3(xo) = 5,20584413
gz(xo) = 3.5 g4(xo) = 25.7058441

SOLUTION:

x* = [.996387714, 4.19429134, 2.97449996, 3.962212286,
1.65300, 1.2551]

£(x)* = ,06060082755

Constraint #3 is active.

COMMENTS: This problem involves the design of a four

bar linkage to approximate a required curve. The objective
function represents the mean square error of the actual
points generated to the desired points on the curve. |

A complete description of the problem is given by Tomas
[67].
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AUXILIARY SUBROUTINE AND FUNCTION
LISTING FOR PROBLEM #25

SUBROUTINE DES(PHI»X1,Y1)
DIMENSION PHIC(31)9X1(31>yY1(31)
PI=3.141592654

DO 10 I=1,31

X1(I)= ¢ 404+SINC (2, 0PI IR ((PI~PHIC(I))/(2,0%FI1)~416))

Y1(I)=2,0++P0RSIN(PI-PHI(I))
RETURN
END

FUNCTION F(X)

DIMENSION X{(1)sX1A(31)vY1A(31)
DIMENSION PHI(31)¢X1(31)yY1(31)
DATA TAZ0/

IF(IA.EQ.1)> GO TO 2

IAa=1

PI=3.14159

XINC=(2.0%PI)/30.0

no 1 I=1,31
FHICI)=XINCXFLOAT(I-1)

CALL DESC(FHIr»X1r,Y1)

F=0.0

DO 10 I=1,31

CALL FOS(XsPHI(I),CO0SS)
SINS=SQRT(ABS(1,0-COSSXCOS8))

COSG=(X(4)+X(3)kCOSS-X(1)XCOS(FPHI(I)))/X(2)
SING=(X(I)RSINS-X(LIXKSIN(FHI(I))>)/X(2)
X1A(I)=X(1)XCOS(PHI(I))+X{(S)XKCOSG-X{(S5)IXSING
Y1IACT)=X(1)XSINC(PHIC(I) )+ X{(S)XSING+X(6)%C0OS0
FEF+(X1ACT)=X1CI) IRR2+(YLIACTI)-Y1(I) ) %%2

F=8QRT(F/31.0)
RETURN
END
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CONSTRAINT AND AUXILIARY SUBROUTINE

LISTING FOR PROBLEM #25

SUBROUTINE CONST(XyNCONS»CON)

DIMENSION X<(1)»CON(1)

COMMON/A/ XMU1»XMU2

DATA XMULsXMU2/,7853981633+2.356194491/

CONC1) ==X (1) +X(2)#X(3)~X(4)
CON(2)==X(1)-X(2)+X(3)+X(4)

CON(I) ==X 22 RX(2)=X{IIRX(II+{(X(4)=-X(1)IR(X(4)-X(1))
1 +2.,0%X(2)%X{(3)XCOS(XMUL)
CON(4)=X(2)XX(2)+X(IIRX(I)~(X(4)+X(1))IR(X(4)+X(1))
1 -2,0%X(2)%X{(3)%C0OS(XMU2)

RETURN

END

SUBROUTINE POS(XrPHI»W)

DIMENSION X(1)

REAL KyeL oM

PI=3.1415924654

M=2, 0XX (1 IRX(3)KSINC(FPHI)

L=2, 0kX(3)RX(A) -2, 0X{1)XX(3)XCOS(FHI)
K=X{1)XX(1)=X{(2IX(2I+X(IIRX(II+X(AIXX(4)~2,0%X(4)%X(1)XCOS(PH
A=l XL 4+MHXM

B=2,0XKkL

C=KEKK—-MXM

TERM=SQRT(ABS(BXB~4.0%XAXC))
IF(PI-PHI.LT+0.0) TERM=-TERM
W=(~B+TERM)/(2.0%A)

RETURN

END
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(26). Whirlpool design problem ([68].

GENERAL INFORMATION:

3 variables

1 Functional equality constraint

4 Variable bounds x; S .044; 13,13 < x, 5224
Xq 2 600

STARTING INFORMATION:

X, = [.1, 18, 144)
f(is) = 30.9860722

hl(xo) = =-211.4309

SOLUTION:

x* = [.122063682, 24, 108.5052434]

£(x*) = 27.305651561
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FUNCTION LISTING FOR PROBLEM #26

FUNCTION F(X)
DIMENSION X(1)

- DATA RHOsXMUsCPyFRyPIyDsy TINy TSURFyHyWsRHOCYRHOA/ 40747
1.04437 42409 .70993:1415%:525975:0r45.0913:1393+166+559.9169./
AF=X(2)/X (1) %2, 0%k (WkH-30,0%PIXD¥%X2/4,)/144,0
AT=30,0%PIXDEX(2)/144,0
AC=(HXX(2)-10,0XDXX(2)-X(2)/X(1)X.006%H)/144.,0
G=({RHOXX(3) ¥ (HkX(2))/(AC%X144.0))%60.0
RE=GX1,083/(12.,0XXMU)

IF(RE.LT+1.,0E~10) RE=1.0E-10

HO=(+ 195KGKCP) 7/ (PRXX . 67XREXX 4+ 35)
XMDOT=RHOKX (3 ) XHXX(2)/144.0%60.0
DELP=1.833E-06/RHOXGXX2%3 . 0% (AF /ACKREXX (- +.5)++1XAT/AC)
IF(HOW.T+1.0E~10) HO=1.0E-10

XVAL=,0732%SQRT (HO)

ETAF=TANH (XVAL ) /7XVAL

ETAS=1.0~AF/(AF+AT)X (1 .0-ETAF)

HEF=1,0-EXP (~ETASXHOX(AF+AT)/ (XMDOTXCP))

Q=HEFX (TIN-TSURF ) XXMDOTXCP

H1i=DELP/RHOXXMIOT/1.,98E+046

IF(H1,LT.1.0E-10) H1=1.0E-10

COSTM=8GRT(H1)/.,0718+4.0
COSTT=1,01%30,0%kX(2)XPI/4,0X(DXX2-(D~,0356)%X2)

COSTF =4 47XKHXWX , O06KRHOA/1728 . XX(2) /X (1) -
COSTT=COSTT%RHOC/1728.

F=COSTM+COSTT+COSTF .

RETURN

END
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CONSTRAINT LISTING FOR PROBLEM #26

SUBROUTINE EQUAL (XsFSIsNPSI)
DIMENSION X(1)+FPSI(1)

DATA RHOs XMUrCFyFRyPIyDy TINy» TSURFsHyWsRHOCYRHOAZ 0747y
1:04439.:2407.:70923:141599:525979:0945,0¢13.1393:166¢559:2169./
AF=X(2) /X1 IK2., 0k (WKH~30.0XPIXD%X%X2/4,)/144.0
AT=30.0XFIXNXX{(2)/144.,0

AC=(HAX(2) 10, 0KkDXX(2)~-X(2)/X(1)Y%X,006XH)>/144.,0
G=(RHOXX{(3)X(HXX(2))/{(ACX144,0))%60.0
RE=0G¥%1.083/(12.0%XMU)

IF(RE«L.T+1.,0E~10) RE=1.,0E-10

HO=( . 195XGXCP )/ (PRXX ., 67XREXX ,35)
XMDOT=RHOXX (3) kHXX(2)/144,0%60,0
DELFP=1,833E-06/RHOXGXKk2%X3 OX(AF/ACKREXX (~+5)++1X%AT/AC)
IF{(HO.LT.,1.,0E~10) HO=1,0E-10

XVAL=,0732%SART(HO)

ETAF=TANH ( XVAL ) /XVAL

ETAS=1.0-AF/(AF+AT)YX(1.,0-ETAF)
HEF=1,0-EXP(-ETASXHOX (AF+AT ) Z(XMDOTXCP))
Q=HEFX{TIN-TSURF )%*XMDOTXCF

PSI(1)=46000,0~-Q

RETURN

END
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(27). Synthetic natural gas production problem [54].

GENERAL INFORMATION:
48 Variables
2 Equality constraints
1l Functional inequality constraint
72 Variable bounds xj 2,002 3=1,2,3, ...,48
xj £ 2.0 j=1,2,3, ..., 24

STARTING INFORMATION:

O.

J
x =1.3 j=25,26, ..., 30
O.

J
X =100 j=31,32'---' 48
05

£(x_ ) = 1.8623009
gy (%) = .0319258906

hl(xo) = 0
hz(xo) =0
SOLUTION:

x* = [2, .002,2, .0339797, .01657455, 2,1.8945347,
.002, 2, .03424074, .016670308, 2, 2, .002, 2,
.002, .002,1.988000, 2, .002, 2, .002, .002, 2,
1.0159886, .002,1.003163, .002, .002, .999691944,
1.11272844, .002,1.1024463, .002, .002, 1.1030764,
.92326572, .9343325, .92947437, .91383802,
.90517162, .89452569,1.174573, .002, 1.12080408,
.002, .002,1.1163321536]

Constraint is active at solution.
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170

FUNCTION AND EQUALITY CONSTRAINT
LISTINGS FOR PROBLEM #27

FUNCTION F(X)
DIMENSION X(1)
FPENCZ)=( o142 XZX(Z+SART( + 14ZXZ) )) /4,
E=0., :

DO 100 I=1,12
C=1,-X(1I)

E=E+10.%CXxC

DO 120 I=25+36
E=E+1000,.XkFEN(X(I)~-1,)
DO 140 I=37+42
E=E+2000,XFEN(X(I)~=1.)
DO 140 I=43548
E=E+100.,%kX(1)
F=E£/1000.

RETURN

END

SUBROUTINE EQUAL(XsPSIsNFSI)
DIMENSION X(1),PSIC(1)
PSI(1)=12,

PEI(2)=12,

DO 170 I=1,12
PSIC(1)=PSI(1)=-X(I)
PSI(2)=PSI(2)~X(I+12)
RETURN

END
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60

80

INEQUALITY CONSTRAINT LISTING FOR PROBLEM #27

SUBROUTINE CONST(XyNPHI»PHI)
DIMENSION A(18)U(18)+X(1)yPHIC(1)
DATA (A(I)vI=1v18)/.99+831s19209+791010d4rlarlely
1 09!08!102l09'102!102!10!10909/
15T TIER OF GASFIERS

DO 20 I=1+6

Ki=1+24

K2=I+42

K3=I+12

ALP=X (K1) RX(K1)XACTII K2 kX(K2)/7(1+X(K2)IRX(KI)
UCI)=X(XIRXCI)/(XCI)+ALP)

2ND TIER OF GASFIERS

DO 40 I=7,12

Ki=I+24

K2=1I+36

K3=I+12
ALP=X(K1)XX(K1)XA(IIR2. KX(K2)/(1 . +X(K2) )%RX(K3)
SUM=X(I)+U(I~6)

UCI)=SUMXSUM/ (SUMtALP)

18T TIER OF METHANATORS

D0 60 I=13+15

K1=2%(I-10)+1

K2=I+24

ALP=X(K2)XX(K2)XA(I)
SUM=UC(K1)+U(K1+1)?

U ) =SUMXSUM/ ( SUM+ALFP)

2ND TIER OF METHANATORS

DO 80 I=164v18

K1=I+24

ALF=X(K1)XX{(K1)¥A(I)

SuM=U(I-3)

UCI)=SUMXSUM/ (SUM+ALP)
R=U{16)4+U(17)4+U(18)

PHI(1)=1,5-R

RETURN

- END
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(28) . Flywheel optimization problem.

GENERAL INFORMATION:
5 Variables

3 Functional inequality constraints

10 Variable bounds x:.I 210 ij=1,2,3,4,5
xj 2 =10 j=1,2,3
x4 2 .10
-
Xg 2 1.0

STARTING INFORMATION:

f(§6) = -1.631484

g, (X)) = 16.40753 3
! g4(X) = 28.03172
gz(x)=1
(o)
SOLUTION:

X = [.19852438, -3.01059794, -.0530266138,

2.83165094, 10)
f(x*) = -5.55840576

Constraints #1, 2 and 3 are active.

COMMENTS: This problem involves the design of a flywheel
to produce the maximum kinetic energy for a given amount
of material rotating at a specified speed. The flywheel
is to fit on a one inch shaft and the design variables
specify the flywheel contour. The flywheel contour is
generated using Fourier coefficients to allow the flywheel
to take any arbitrary shape with a limitation imposed by
the small number of terms used. The constraints include

a constraint on the maximum allowable stress in the flywheel
which involves the solution of a second order nonlinear
boundary value problem. The evaluation of this constraint
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(28). (cont'd)

alone required almost 3/4 second. The other constraints
placed limits on the maximum thickness of the flywheel
and the maximum value of the outer radius of the
flywheel.
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FUNCTION AND AUXILIARY SUBROUTINE
FOR PROBLEM #28

FUNCTION F(X)

DIMENSION X(1)sXC(100)y THICK(100)sDTHICK(100)
COMMON/B/ XMU»RHO» THICK » W29 DTHICK y KKK
COMMON/ST/ VALUE2

DATA XMU»ALPHAsWIEPSIsRHO¢YI o XI s IXsKKKvEPS/ 300
1 1000,07628.,0y.000177,263E~4¢0,0r1.0¢99»%98+10/
W2=X(¢&)%100.,0

DR=X(5)-X1I

XC (1) =XI

PO 40 I=1sKKK

XC(I+1)=XC (1) +DR/FLOAT (KKK)

CALL THFN(XCrTHICKyDTHICK s XsKKKsX(11)9XI)

CALL ENERGY(XC/sF)

F==F/1.,0E+06

RETURN

END

SUEBROUTINE ENERGY (X»XKE)

DIMENSION X(100)sTHICK(100)¢DTHICK(100)
COMMON/B/ XHUyRHO» THICK»We DTHICK ¢ KKK
CONST=3,1415927%¥RHOXWk X2

XKE=0.,0

O 10 I=1sKKK

XKE=XRE+X (I XXIRTHICK(IDR(X(I+1)~-X(I))
XKE=XKEXCONST

RETURN

END
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CONSTRAINT LISTING FOR PROBLEM #28

SUBROUTINE CONST(CsNPHIsPHI)
DIMENSION Y1(100),Y(100)»X(100)»RET(100)»TST(100)» THICK(100)
DIMENSION DTHICK(100):STOT(100)+C(10)sPHI(4)
COMMON/B/ XMUrRHO» THICK»W2yDTHICK ¢ KKK
COMMON/TFN1/ TMAX
COMMON/ST/ VALUEZ2
DATA XMU»ALPHAYW,EPSIyRHO»YI»XIrIIrKKKyEPS/ .30y
1 1000.00628:094000197,263E~490,071.0,99¢98».10/
ISTRT=0
W2=L(46)%100.0
DR=C(5)~-XI
X(1)=XI
DO 460 I=1sKKK
40 X{(I+1)=X(I)+DR/KKK
CALL THFN(XyTHICKsDTHICK,sCrKKK»C(4)»XI)
9 Y1I=100000.00
2 CALL RUNKUT(Y1IsYI#XIsC(S)rIXsYrY1sX)
FXL=~Y{(II)
XL=Y1I
YI=0.0
Y1I=2503000.00
CALL RUNKUT(Y1I»YIrXIsC(5)sIIsYrY1sX)
FXR==Y(II)
XR=Y11
CALL FALSE(XLsXReFXLsFXRrEPS»YrY1sXsXI»C(S5)sYIsROOT»II1)
SMAX=0.0
VALUE2=0.0
DO 300 NN=1,I1
RST(NN)=Y (NN)/(THICK(NN)XX(NN))
TSTINN)=(Y1 (NN +THICK(NN)XRHOXW2XX2KX (NN)I%XX2) /THICK(NN)
STOT(NN)=SARTC((RST(NNY=TST(NN) Y XKk2+RST (NN) XX2+TST (NN) XX2)
IF(STOT(NN) .GT.SMAX) SMAX=STOT(NN)
VALUE2=VALUE2+(30000.0-STOT (NN) ) k%2
300 CONTINUE
VALUE2=SQRT(VALUEZ2)
IF(ISTRT.EQ.2) WRITE(&6r310)
310 FORMAT(1H1yr % RADIAL STRESSXs2Xs XTANGENTIAL STRESSX»2Xy
1 % EQUIVALENT STRESSXy1XsX RADIUS %Xs4Xs % THICKNESSX)
IF(ISTRT.EQ+2) WRITE(62320)(RST(I)»TET(I) s STOT(I) e X(I)>»
1 THICK(I)»I=1y1II1)
320 FORMAT(1H ¢5F15.2)
PHI(1)=(30000,0-8MAX)/1000.0
PHI(2)=5,0-THAX
CALL VOLUME(C(4)sCrVsTHICKsKKK?X)
PHI(3)=(625.,0-V)/10.
900 RETURN
END
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AUXILIARY SUBROUTINE FOR PROBLEM #28

SURROUTINE RUNKUT(Y1IsYIsXIsXFeIIrYrY1eX)
DIMENSION Y1<(100)»Y(100)»X(100)
REAL MOsM1sM2/M3

X(1)=XI

Y(1)=YI

Y1{1)=Y1lI

H=(XF-XI)/(1I-1)

KK=II-1

D0 10 J=1ysKK

Li=J

XR=X(J)

YR=Y{(J)

YiR=Y1(.))
MO=HXYRUNC(XRsYRrY1ReLL)
XR=X(J)+H/2.0
YR=Y(JI+HXY1(J) /2.0

YiR=Y1(J)+M0/2.0
M1=HXYRUN(XRrsYR»Y1RsLL)
YR=YR+HXM0/4.0

YIR=Y1(J)+M1/2.0

M2=HXYRUN(XRrYR» Y1IRsLL)

XR=X(J)+H

YR=Y(J)+HXY1 () +HEAML1/2,0

Y1R=Y1 (J)+M2
M3=HRYRUN(XR»YRrsY1RsLL)

Y{J+1) =Y (JYHHEYL(JIHH/6 . OKCMO+MI1+M2)
Y1(J+1)=YI () +(MO+2,0%kM1+2.0%M24+M3) /6.0
X(J+1)=X(J)+H

RETURN

END
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AUXILIARY SUBROUTINES FOR PROBLEM #28

SUBROUTINE FALSE(XL»XRsFXLsFXRrEPSsYsY1eXsXIvXFeYIrROOT»II)
DIMENSION Y1(100)+Y(100)¢X(100)
105 XAFP=XL+ (FXLX(XR-XL)/Z(FXL~-FXR))
CALL RUNKUT(XAPPsYIrXIsXFsIIsYrY19X)
FXAPP=-Y(II)
IF(ARS ( (XAPP-XSAVE)/XAPF).LE.EPS) GO TO 25¢C
VALUE=F XAFPXFXL.
IF(VALUE.LT.0) GO TO 110
XL=XAFPP
XSAVE=XL
FXL=FXAFP
GO TO 105
110 XR=XAPF
XSAVE=XR
FXR=FXAFPP
GO TO 105
250 ROOT=XAPFP
RETURN
END

FUNCTION YRUN(XRsYR»Y1R»I)

DIMENSION THICK(100)sDTHICK(100)

COMMON/B/ XMUsRHO»THICK W2y DTHICK s KKK
YRUN=(1,0/THICK(I)XDTHICK(I)-1,0/XRIKYIR+(1,0/ (XRXX2)-XMU/ (XRXTHI
AXKCI)IKDTHICKCI) )RYR~(3+0+XHU) KRHIKW2XX2RTHICK (I ) XXR

RETURN

END
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AUXILIARY SUBROUTINES FOR PROBLEM #28

SUBROUTINE THFN(X»THICKsDTHICKsCrKKK»COvXI)
DIMENSION X(100) s THICK(100) » DTHICK(100),C(10)
COMMON/TFNL1/ TMAX

THICK(1)=C0

XL=X(KKK+1)~-X(1)

NFST=2

TMAX=THICK(1)

DO 10 I=1sKKK

THICKC(I+1)=CO4+C(1)X(X(I+1)~XI)

DO 9 LM=1¢NFST

JKL=LM+1
THICK(I+1)=THICK(I+1)+C(IKLIKSINC (2, 0XJKL=F.0) %3+ 14159%K(X(I)-X(1))
1 /7X0)

IF(THICKC(I+1).GT.TMAX) TMAX=THICK(I+1)
DTHICKC(I)=(THICK(I+1)-THICK(I) )/ (X(I+1)-X{(I))
RETURN

END

SUBROUTINE VOLUME(COrCyVyTHICK» KKKy X)
DIMENSION X(100)yTHICK(100),C(10)
V=0,0

PI=3.14159

DELTX=(X(KKK+1)-=X(1))/KKK

LMN=KKK~-1

DO 10 I=1sLMNs2

R1=(X(I+1)4X(1))/2.:0
R2=(X{I+1)+X(I+2))/2.0
R3=(R1+R2)/2.0

V=U+2, OKPIXKDELTX/3+OX(THICK(I)XR1+4,0KTHICK(I+1)XRI+THICK(I+2)%R2)
RETURN

END
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(29). Optimization of a multi-spindle automatic lathe [69].

GENERAL INFORMATION:
10 vVariables
1 Equality constraint
14 Functional inequality constraints

20 vVariable bounds

0 = Xy 10 .00005 = Xe s .0013

0 s x, £ .1 .00005 < X, S . 0027

.00005 = Xy < .0081 .00005 = Xg = ,002
10 = X, £ 1000 .00005 =< Xg =1
.00005 = Xg £ .0017 .00005 = X130 <1

STARTING INFORMATION:

X = [10, .005, .0081, 100, .0017, .0013, .0027, .002,
° .15, .105]

f(is) = 2931.46961755

hy (X)) = -1.77636 x 107 gg (%) = 49.99566

g, (X)) = 9.074074 gg (X ) = 49.99584

92‘55’ = 9,117647 910‘55’ = 49.97842
g3(§6) = 9,092308 911‘25’ = 49.97748
g4 (X)) = 9.196296 g, (X,) = 49.98758
g (X)) = 9.375000 g,3(X,) = 49.98960
gg (X)) = 49.99737 gy4 (X)) = 25.19410

g, (X)) = 49.99737
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(29). (cont'd)

SOLUTION:

x* = [.209162445, .000614223, .0081, 442.684799, .0017,
.0013, .0027, .001457317, .155236846, .0997631534]

£(x*) = -1614.9381624
Constraints #1, 9, and 12 are active.
COMMENTS: This problem concerns maximizing the profit

rate for producing a component on an automatic spindle
lathe.



FUNCTION AND CONSTRAINT LISTINGS FOR PROBLEM #29

FUNCTION F(X)
DIMENSION X(1)

F=20,0E+03

1 X(15,0E-2%X(1)+14,0E4+0%XX(2)~46000,0E~5)
2 /(2.0E-3+X(1)+60.0E+0%X(2))

RETURN

END

SUBROUTINE EQUAL(XrPSIyNPSI)
DIMENSION X(1)FSI(1)
PEI(1)=X(?)+X(10)-255.,0E-3
RETURN

END

SUBROQUTINE CONST(XsNPHIrsPHI)

DIMENSION X{(1)sFPHIC(1)
FHIC(1)=X(1)=75.,0E~2/X(3)/X(4)
PRI(2)=X(1)-X(P)/X(5)/X(4)
PHIC(3)=X(1)=X(10)/X(6)/X(4)~10.0E+0/X(4)
PHI(4)=X(1)~19.0E-2/X(?)/X(4)-10,0E+0/X(4)
PHI(S)=X(1)-125.0E-3/X(8)/X(4)

PHI(6)=1,0E+4%X(2)-131.0E-3XX(PIXX (D) KXEHE,Q0E-3KkX(4)%%k15,0E~1
PHI(7)=1,0E+4%X(2)~-103B.0E-6XX(10)XX(S5)%k%160,0E-2%XX(4)%%3,.0E+0

263

FHI(B8)=1,0E+4%X(2)-223,0E~6XX(7)X%XE666+0E-~3KX(4)%%15,0E~1
FHI(?)=1,0E+4KX(2)~76,0E-6XX(B)XX3T5,0E~2%XX(4)%%x566.,0E~2
FHIC10)=1.0E+4%X(2)~698.0E-6XX(F)¥%120,.0E-2%kX(4)%%2,0E4+0
PHIC11)=1,0E+4%XX(2)~50,0E-6%XX(3)%%X160,0E-2%X(4)%%3,0E+0

FHI(12)=1,0E+4%XX(2)~654.0E-BXX(3)%%k242,0E-2%X(4)%%417.0E~2
PHIC(13)=1,0E+4%XX(2)~257 0E~-&XX{( 3 ) ¥KEE6.0E~-TKX(4)%%15,0E-1

FHIC14)=30.0E+0~-2003,0E-3%X(5)%X(4)~1885,0E-3%kX(4)%XX(4)

1 ~184.0E-3XX{(B)%kX(4)-2,0E+0XX(3)%%X803,0E~-3%kX(4)

RETURN
END
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(30). wWaste water treatment problem.

GENERAL INFORMATION:
19 Variables
11 Equality constraints

1 Functional inequality constraint

38 variable bounds xj 2 .00001 j=1,2, ...,19
xj £50 3=1,2,16,17; Xy <100 §=3,4,5,6

x5 € 1.0 x 10° j=7,8,9,10,11,18,19;

xj 21 j =12,13,14,15;

STARTING INFORMATION:

§6 = [2, 4,100, 50,5, 20, 20, 3000, 3000, 2000, 7000,
.001, .3, .5, .001,5, 1, 9000, .5]

f(ié) = 61.9274433203

g, (x_ ) = .2000000000 h6(§6) =-75.42857143
hl(§6) = +11.8622220 h7(§6) ~ +42,5281479
hz(is) = +5.05888904 ha(is) =-3211.294074
h3(§6) =-43.52963014 h9(§6) = +1729.00000
h4(§6) = +1641.76482 hlo‘ié’ =-6.18698064
,h5(§6) = +42.8571428 h11(§$) =+.,104000000

SOLUTION: (Vicinity)

X" = [.004473667, 3.441565, 99.34824, 89.130035,
15.279316, 15.279316, 94.726127, 12304.197,
12313.263, 12313.263, 95905.631, .00001, .00001,
.9999890, .00001, .00001, .1622235, 8305.1515,
.0014797356]
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(30). (Cont'd)

F(X*) = 24.4724654

Constraint #1 is active.

COMMENTS: This problem involves the design of a waste
water treatment plant for minimum cost. A complete
description of the problem is given by Himmelblau [70].

The problem contains many local minima, the one listed

here is the best one found from the reported starting point.
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FUNCTION AND INEQUALITY CONSTRAINT
LISTING FOR PRNBLEM #30

FUNCTION F(X)

DIMENSION X(1)
ZI1=25.0% (2268, 0kX(16)2%X (1) )%%0,.827
ZI2=1.75E+05%X(17)43.65E+04%X(17)%%k,182
ZI3=12.6%XX(18)+5.35%10.X%3,378/X(18)%K.126
F=1. 4*(ZII+ZIZ+ZI3+1.095E+04+1-155+03#(X(1)*(X(13)"X(14))
1 #X(2)%(1,04X(12))-3,0%(1,0-X(19))))
F=F/1.0E+04

DO 33 I=1r11

F=F+1.,0E+Q03%X(19+I)

CONTINUE ’

RETURN

END

SUBROUTINE CONST(XyNPHIsPHI)
DIMENSION X(1)»PHI(1)
COMMON/ANS/ NFsNIYNE
NI=NI+1
PHI(1)=1.,0-X(13)~-X(14)
RETURN

END
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EQUALITY CONSTRAINT LISTING FOR PROBLEM #30

SUBROUTINE EQUAL(XyPSIsNPBI)

DIMENSION X(1)¢PSI(11)

AK=,0259%25.0/20.0%% . 656

XZA=X(3)KEXP(~AKXX(16))
ZJ1=~(XC1)XX(13)%XZ4+300,0%X(19))
PSICL)=ZJI+X(1)RX(3)=X(2I%RX(5)¥X{(12)
YZA=X(7)+S0K(X(3)~XZ4)

ZJ2:==XC13)XXC1)%KYZ4
PSI(2)=2J24X(1)RX(7)-X(2)%X(PIXRX(12)
ZJ3==300,0K(1.0=-X (192 )+3,0%¥X(E)X(1.0-X(19))-X(1)%kX(14)%XXZ4
PSI(3)=2J3+X(2)K(X(4)-X{(6I)+X(1IkX(AHI%XX(14)
ZJ4=3,0kX{112%(1.0-X(19))+X(1I)XX(14)K(X(11)~-YZ4)
PSIC(4)=ZJ4+X(2)%(X(8)-X(11))

ZJS5=X(17) K. ABRX(D5)I(X(2?)/7(100.,04X(D)))
FEI(5)==2,0KkZIG+X(2)K(X(4)~-X(T))
PSI(S)=ZI3+X(2)X(X(B)=X(P) )=+ 048%kX(P?)%X(17)
ZK7=X(1)%(1,0-X(13)~X(14))
QZ12=X(1)%X(1,0-X(13)-X(14))+X(2)%(1.,0-X(12))
FSI(7)=~ZK7XXZA+X(6IXQZ12-X(2)AX(5)%(1,0-X(12))
ZJ8=X(10)XQZ12-ZK7%YZ4
PEI(8)=ZJ8~-X(2)XX(?)%(1.,0-X(12))
PSI(9)=6,0%X(1.0-X(15))%X(20,0-X(H)I+X(11)R(X(2)~3.0%(1.,0~-X(15)
1 )=X(1)%kX(14))4+3,0%kX(19)%X(11)~X(10)%QZ12
CK=7.4%2,0%1.2%%4/2,31E4+04

TEST=-CKXX(18)/QZ12

IF(TEST.GT+29) ZJ10=-2,1%SQRT(ABS(X(10)))IXEXF(99.0)
IF(TEST+LT«?9) ZJ10=-2.1%X50RT(ABS(X(10)))XEXP(-CKXX(18)/QZ12)
FSI(10)=2ZJ104+2.,0%(20.,0~X(6))
PSIC11)=(2,0-X{13))%X(1)~X(12)%kX(2)~3,0%kX(19)
RETURN

END
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" Appendix C

Intermediate Data
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