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ABSTRACT

Sandgren, Eric. Ph.D., Purdue University, December 1977.
The Utility of Nonlinear Programming Algorithms. Major 
Professor: K. M. Ragsdell.

A comprehensive comparative study of nonlinear pro­
gramming algorithms as applied to engineering design is 
presented. Linear approximation methods, interior penalty 
function methods and exterior penalty function methods 
were tested on a set of thirty problems and were rated on 
their ability to solve problems within a reasonable amount 
of computational time. The effect of the problem parameters 
on the solution time for the various classifications of 
algorithms was studied. The variable parameters included 
the number of design variables, the number of inequality 
constraints, the number of equality constraints and the 
degree of nonlinearity of the objective function and 
constraints. Also the combination of penalty function 
algorithms and linear approximation algorithms was investi­
gated .



www.manaraa.com

1

CHAPTER 1 INTRODUCTION

1.1 Introduction 
The field of design engineering has been in a state 

of rapid evolution over the past two decades. This evolu­
tion has been greatly influenced by the introduction of 
computer aided design. Design procedures previously carried 
out by hand are now being programmed for a computational 
solution. This reliance on the computer originated at the 
dawn of the space age and has continued to an ever increas­
ing degree.

Previously the goal of an engineering designer was 
to devise an adequate component. The fact that the pro­
posed design was not very compact or slightly overdesigned 
and overweight was far overshadowed by the adequate per­
formance of the component. However, as the space age 
progressed, components had to be designed which were strong, 
compact, extremely light in weight and above all dependable. 
These often competing objectives greatly increased the 
complexity of engineering design and introduced the concept 
of the "best" or optimal design to everyday language.
Now the designer had to select from a wide range of feasible 
designs, the one that met the design criteria in the best 
fashion. This is where the computer became extremely
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helpful, for the designer was now required to attack prob­
lems which were of such a complex nature that once the de­
sign variables were selected it was not at all obvious as 
to how to proceed to meet the desired objectives. This 
is why design procedures formerly carried out by hand were 
converted for a computational solution. This conversion 
enabled the linking of the engineer with his knowledge of 
the problem and the computer which could quickly analyze 
a proposed design. With the current energy crisis and the 
ever increasing cost of material and labor, this linking 
of designer and computer to reach a better solution is 
rapidly becoming a way of life in mechanical engineering.
A computational procedure to aid the designer in evaluating 
a series of choices of the design variables so as to best 
achieve the objective without violating any design con­
straints is then very desirable. A powerful computational 
tool which provides this aid is the field of nonlinear 
programming.

Based upon his knowledge of the problem the design 
engineer is able to define a set of design variables, a set of 
constraints which define the feasible region, and an overall 
objective of the proposed design. The mathematical formu­
lation of this problem is to:

Minimize f (x); x =  [x ,x2#x3, . .. ,xN] ERN (1.1)
subject to _

gk (x) > 0; k =1,2,3, ...,K (1.2)
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and
= 0; £ = 1,2,3, . . . , L (1.3)

In this formulation x represents a column vector containing 
N design variables, f (x) represents the objective function 
which gives an indication of the quality of a given design, 
and g(x) and h(x) represent the sets of inequality and 
equality constraints respectively which serve to limit the 
design space to some feasible region.

This general formulation has been applied to a wide 
range of problems over the past fifteen years, encompassing 
the fields of engineering, economics and the physical 
sciences. If the objective function and constraints are 
linear, the problem falls into the classification of linear 
programming, a highly developed branch of mathematical 
programming. Solution of a linear programming problem is 
possible even when the problem involves several hundred 
variables and constraints. Unfortunately, the objective 
function and constraints are generally nonlinear in nature 
for the majority of problems a mechanical engineer faces. 
This type of problem where either the objective function, 
the constraints or both may be nonlinear falls into the 
field of nonlinear mathematical programming and although 
th§ subject of much current research, there does not 
presently exist a general method to solve the nonlinear 
programming problem. So while the simplex algorithm 
can be successfully applied to practically any linear
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programming problem, the engineering designer must choose 
between a large number of available algorithms to attempt

iir

to solve a nonlinear programming problem with no guarantee 
that any selected method can solve the problem. Since each 
available algorithm developed to handle the nonlinear 
programming problem has a limited capacity to solve any 
given problem it becomes necessary to investigate the 
ability of each of them to handle the engineering design 
problem.

Several attempts at conducting comparative studies 
of nonlinear programming algorithms have been made to 
date but none of these studies have produced any conclusive 
results. In fact many of the results of these studies are 
contradictory and the designer still has no real guide 
in the selection of a nonlinear programming algorithm.
It is the major goal of this work to provide this information.

1.2 A Brief Review of Constrained 
Nonlinear Programming Techniques 

The vast majority of the algorithms available today 
which handle the constrained nonlinear programming problem 
as represented by equations (1.1) through (1.3) are of 
two basic types. The first approach known as the penalty 
function or transformation approach seeks to transform 
the constrained problem to a sequence of unconstrained 
problems. This sequence of unconstrained problems may
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then be solved by any of a large number of unconstrained 
search techniques. The second approach known as the 
linearization type approach handles the problem directly 
as a constrained problem by the linearization of the objec­
tive function and/or the constraints. Each of these basic 
methods will now be discussed in more detail.

1.2.1 Penalty Function Methods
The penalty type approach reformulates the constrained 

nonlinear programming problem to the following form:

Minimize P(x,R) = f (x) + ft[R,g(x),h(x)] (1.4)

Here f(x) represents the original objective function 
and n represents the penalty term which is a function of 
the penalty parameters R, the inequality constraints and 
the equality constraints. The exact way in which the pen­
alty term is formed defines the particular method. The 
basic idea behind the penalty function methods is to 
penalize any design which violates one or more of the 
constraints. However, it must be noted that this is 
accomplished by drastically distorting the contours of 
the original objective function which can make the un­
constrained search very difficult. To circumvent this 
difficulty the original constrained problem is replaced 
by a sequence of unconstrained problems. At the initial 
stage the penalty term is designed so that the original
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function contours are not altered drastically. Then at 
each successive unconstrained problem the contours are 
altered to a greater extent making each unconstrained 
minimization more difficult. However, each successive 
unconstrained search is started from the solution of the 
preceding stage and the distance traveled from one stage 
to the next decreases as the number of stages increases. 
Ideally the increase in difficulty from stage to stage is 
offset by the smaller distance traveled so that each 
stage requires approximately the same computational effort. 
Unfortunately, this is not always the case.

The penalty function approach may be subdivided into 
two classes. The interior penalty function acts as a 
barrier to keep the successive points from leaving the 
feasible region with respect to the inequality constraints. 
Typical examples of an interior type penalty function would 
be

The penalty function given by equation (1.5) has been 
implemented in one of the more widely used penalty function 
algorithms SUMT II], and the penalty function given by 
equation (1.6), developed by Carroll [2], has been used

_ _ K _P(x,R) = f(x) - R I In (g. (x)}
k=l K

(1.5)

or
Tf

P (x,R) = f(x) + R (1.6)
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in many algorithms including an earlier version of SUMT. 
Starting from a feasible point for a given value of R none of 
the constraints may be theoretically violated throughout the 
solution procedure. This is because in order to pass from 
the feasible region to the infeasible region one or more of 
the constraints would have to change from a positive value to 
a negative value. As any ^(x) approaches zero, however, the 
penalty term would add penalty value which approaches infin­
ity thus creating a supposedly insurmountable barrier. So by 
starting with a given value of R (say between 1 and 10) and 
successively performing unconstrained searches where at the 
end of each unconstrained minimization R is divided by a fac­
tor (say 10), the successive stages should approach some con­
strained solution. Under certain conditions including a con­
tinuous objective function and constraints and the existence 
of a nonempty compact set the successive penalty stages can 
be shown to converge to the minimum of the constrained prob­
lem [3]. Realistically, however, the penalty type approach 
will handle a large number of problems which do not satisfy 
all of the required conditions for convergence to the con­
strained minimum.

Since equality constraints cannot continuously be 
satisfied by an interior penalty type method, this kind 
of constraint must be handled by an exterior penalty term. 
Thus an interior type penalty function which includes 
equality constraints is actually a mixed interior-exterior
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penalty function. The added terra is usually a function of 
the square of the equality constraints. With this additional 
term equations (1.5) and (1.6) become:

_ _ K _ L ,
P(x,R) = f (x) - R V In {g. (x) } + 1/R I h a(x) (1.7)

k=l K 1=1
and

K  l L  7P(x,R) = f (x) + R I — + 1/R I h »(x) (1.8)
k=l gk (x) fel

As the value of R is continuously decreased as re­
quired for the convergence of the interior portion 
of the penalty function the factor 1/R increases. This 
allows the equality constraints to be violated at the ini­
tial stages but as the penalty parameter R is reduced 
the penalty increases and the successive unconstrained 
solutions will approach feasibility with respect to the 
equality constraints.

The exterior penalty approach may also be used to 
handle the inequality constraints. This type of penalty 
function allows the solution to initially leave the feasible 
region with respect to the inequality constraints as well 
as the equality constraints. A typical example of an 
exterior penalty function would be:

K _ ? L 9?(x,R) = f(x) + R I <g. (x) > + R I {h,fx)} (1.9)
k-1 * 1=1
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The bracket operator used in this penalty function is used 
in the first summation so that only the values of the 
violated constraints are included. That is

<gk (3?)> = 0 if gk (x) > 0 (1.10a)
and

<gk (x)> = gk (x) if gk (x) < o ( l . i o b )

For this case only a small penalty is added for constraint 
violations when R is relatively low and an increasingly large 
penalty is added as R increases. Thus by starting at a 
relatively low value of R (say 10) and successively per­
forming unconstrained minimizations each time multiplying 
R by a factor (say 10) the successive stages can be seen to 
approach feasibility. Again convergence to the constrained 
optimum can be guaranteed under certain conditions.

In summary then, a penalty function method seeks to 
replace the original constrained problem by a series of 
unconstrained problems. The exact form of the penalty 
term is widely varied and each form produces a different 
method with different rates of convergence to the constrained 
minimum. The unconstrained searches may be performed by 
any of a number of methods. Some of the more frequently 
used methods are Davidon-Fletcher-Powell [4], Fletcher- 
Reeves 15], Powell's method [6], Hooke-Jeeves [7] and 
Broyden-Fletcher-Shanno [8]. The major disadvantage of 
this approach is that a number of unconstrained minimizations
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are required with each unconstrained search involving an 
increasingly distorted version of the original objective 
function. One method which seeks to reduce this distortion 
is Schuldt's Biased Penalty Method [9], A more detailed 
discussion of penalty functions and the unconstrained 
methods incorporated with them may be found in references 
[10-12].

1.2.2 Linearization Methods 
The linearization methods cover a rather broad range of 

algorithms. The first and most basic of the algorithms 
is that of Griffith and Stewart [13]. In this method 
the objective function and all constraints are expanded 
about a point x in a Taylor Series expansion with all of 
the nonlinear terms dropped. The resulting linear program­
ming problem may then be solved by the application of the 
Revised Simplex Method [14]. The solution to this linear 
programming problem produces a new point x which will lie 
at the intersection of two or more of the linearized con­
straints. However, if any of the constraints are very 
nonlinear in nature the solution to the linear programming 
problem may be a very poor estimate of the constrained 
optimum so limits on the maximum change in each design 
variable are imposed at each stage. The basic advantage of 
this method is that it makes use of the well developed 
and readily available simplex method for the successive
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linear programs. The disadvantage is generally slow con­
vergence for problems which are even moderately nonlinear.

A more recent development in the field of linearization 
methods is the reduced gradient concept which was developed 
independently by Wolfe [15] and by Wilde and Beightler [16], 
For this method all inequality constraints are converted 
to equality constraints through the addition of slack 
variables. The variables, consisting of the original design 
variables plus the slack variables, are then partitioned into 
two sets. The first set z" consists of the decision variables 
which are completely independent and the second set y con­
sists of the state variables which are continuously adjusted 
to satisfy the constraints. The reduced gradient may then 
be defined as the rate of change of the objective function 
with respect to small changes in the decision variables 
with the state variables adjusted to maintain feasibility.
The concept may be thought of as a projection of the 
original N variables into an N-L dimensional feasible space 
of the design variables.

The calculation of the reduced gradient is accomplished 
by linearizing the objective function and the constraints 
about x. This gives

df<x) = ||dz + If dy
and
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t >•# i L
L + 1, .. L + K (1.12)

Equation (1.12) may then be solved to find a linear approx­
imation of the required change in the state variables in 
order to maintain feasibility.

Now combining equations (1.11) and (1.13) results in a 
linear approximation to the reduced gradient.

dfT = 3fT _ a_f ah"1 ah .. . .
dz az “ ay ay az u . 1 4

As the elements of the reduced gradient go to zero no change
can be made in the decision variables to improve the objec­
tive function without leaving the feasible region.

Currently the generation of search directions has been 
accomplished through implementation of the Fletcher-Reeves, 
Davidon-Fletcher-Powell, or Broyden-Fletcher-Shanno uncon­
strained minimization techniques. The choice of search 
technique and the method for the selection and subsequent 
changing of the state and decision variables when a bound is 
encountered define each individual reduced gradient 
algorithm. Current published literature [17,18] indicates 
that the generalized reduced gradient is a robust and 
efficient method of solving the constrained nonlinear 
programming problem.

(1.13)
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There are several algorithms available which address 
subsets of the general nonlinear programming problem. Among 
these algorithms are the method of feasible directions 
developed by Zoutendijk [19], separable programming and 
Box's method [20]. These methods will not be considered 
since they cannot handle the general nonlinear programming 
problem as represented by equations 1.1 through 1.3.

1.3 Literature Survey 
Many of the early comparative studies of nonlinear 

programming algorithms involved unconstrained methods. Since 
the unconstrained problem is a subset of the general con­
strained problem and since many of the constrained algorithms 
depend upon an unconstrained technique any comparative 
information on unconstrained algorithms must be considered 
to be useful. Also different techniques used in conducting 
these studies have been used in the studies comparing 
constrained algorithms making their inclusion important 
when tracing the history of comparative studies for nonlinear 
programming codes. One of the first such studies was con­
ducted by Brooks [21] in 1959. Brooks compared the Method 
of Steepest Ascent [22], univariate search, factoral and 
random methods on a series of four, two variable problems. 
Each method was started from various points on each problem 
and the methods were compared on the average improvement
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in the objective function after sixteen and thirty function 
evaluations. The results of the study indicated that the 
Steepest Ascent Method performed best followed by univariate 
search. The results are interesting only in the fact that 
even at this early stage gradient and pattern search type 
methods were demonstrated to be superior to the random based 
methods for this limited set of two dimensional problems. 
This study was followed by a group of comparative studies 
which appeared in the literature in the mid 60's. Among 
these were studies by Fletcher [23] in 1965, Leon [24] and 
Box [25] in 1966, and Kowalik and Osborne [26] in 1968.
These studies involved the comparison of from three to 
eight algorithms including gradient and nongradient tech­
niques on a set of five to eight test problems. The test 
problems were generally unconstrained and the majority of 
test problems were limited to less than four independent 
design variables. Box did include problems which involved 
the solution of simultaneous nonlinear equations which con­
tained up to twenty variables. Box also included results 
on several constrained problems but the emphasis was on 
transformations to eliminate several of the constraints.
The results of the Kowalik and Osborne study also included 
two constrained problems. The criteria for evaluation was 
usually based upon the number of function evaluations 
although Leon did include the computational time for each 
solution in his results. However some of the results
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included the number of function calls which would be re­
quired to calculate gradients for the gradient based 
methods and other results did not, even though analytical 
gradients were supplied. Also the uniformity of accuracy 
at the solution was not consistent in these studies although 
Box did make an attempt to stop the methods at approximately 
the same accuracy. The general consensus from these studies 
was that the variable metric algorithms performed somewhat 
batter than the others, however none of these results could 
be regarded as being conclusive considering the small 
sampling of problems and methods. These studies were 
followed by that of Colville [27] in 1968 which was by 
far the most comprehensive study attempted up to this time.

Colville sent eight constrained problems ranging from 
three to sixteen independent variables to the developers 
of thirty methods. Data was collected which included the 
solution, the computational time required to achieve the 
solution, and the number of function and constraint evalua­
tions. The methods were divided into several broad categories 
including direct search methods, small step gradient methods, 
large step gradient methods, second derivative methods and 
miscellaneous methods. The results were based upon the 
number of problems solved and the mean value and standard 
deviation of the solution times over all of the problems.
In order to compare the times of the different machines 
used in the study a standard timing routine involving
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several matrix inversions was sent to each participant and 
all times reported by each participant were divided by 
the reported time to run the standard timing routine. While 
the results of the Colville Study were inconclusive, several 
interesting observations were made. First of all it was 
found that the performance of a nonlinear programming al­
gorithm was greatly affected by how efficiently it was 
implemented. This was demonstrated by several versions of 
the same type of algorithm producing vastly different re­
sults. Colville also pointed out that the number of func­
tion evaluations, the primary basis of comparison for earlier 
studies, was not a good indication of performance. The time 
required to generate successive points for a given algorithm 
was found to be far more significant than the time spent 
evaluating the objective function and constraints for many of 
the problems tested. Colville stated that the large step 
gradient methods and the second derivative methods were faster 
and more robust than the other methods. Unfortunately, most 
of these methods required analytically computed gradients 
while other codes did not. Problems encountered in this study 
include comparison of solutions of different accuracies, the 
use of the standard timing routine which has since been shown 
to be invalid for accurate comparison [10] and the use of 
analytically calculated gradients with some methods and 
numerically calculated gradients with others. Also by 
having the developer of each algorithm actually solve each
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problem the time reported may be significantly lower than 
that expected by an average user. However, even with 
these inherent difficulties the Colville study in many 
ways pointed out how a comparative study should be conducted 
in order to produce meaningful comparative results.

In 1970 Abadie and Guigou [17] reranked Colville's 
test data including the results for their updated version 
of the generalized reduced gradient code tested in the 
Colville study. The results show the new version to be 
significantly faster than the old version which already 
had the best weighted average score of the algorithms 
tested in the Colville study. Again, however, these results 
were calculated using the questionable standard timing 
routine, but the apparent superiority of the generalized 
reduced gradient technique was demonstrated. Stocker [28] 
conducted a comparative study including many of the algor­
ithms tested in the Colville study and several new methods 
in 1969. Complete results from this study are not generally 
available but some results are presented in [10] along with 
additional data and recommendations. General performance 
is indicated for seven algorithms on twenty problems but 
no specific comparative criteria was used. Again some of 
the codes were supplied with analytic gradients and others 
used numerically calculated gradients. Other small scale 
studies were also conducted during this time period. Among 
these studies were those conducted by Pearson [29] in 1969
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and Huang and Levy [30] and Murtagh and Sargent [31] in 1970. 
Pearson compared the results of seven algorithms on two 
unconstrained and three constrained problems. The con­
strained problems were solved using a logarithmic penalty 
function. The studies conducted by Huang and Levy and 
Murtagh and Sargent involved the comparison of several 
quadratically convergent algorithms on very limited sets 
of test problems. In all of these studies the main criteria 
for evaluation was the number of function evaluations and no 
specific comparative results were presented.

Applications of several nonlinear programming methods 
to a specific type of problem are common throughout this 
time period. Applications to least square problems were 
considered by Bard [32] and Jones [33] in 1970 and to 
optimal control problems with terminal state constraints 
incorporated as a penalty term by Pierson and Rajtora [34] 
in 1970. A more recent comparison of methods for the solution 
of structural problems was conducted by DeSilva [35] in 1973. 
These studies are typical of application type comparisons 
in that they consider a very limited number of algorithms and 
test problems. For this reason the results do not provide 
much comparative information. In 1971 at the Conference 
on Numerical Methods for Nonlinear Optimization held at the 
University of Dundee in Scotland several comparative papers 
were presented. Sargent and Sebastian [36] and Himmelblau 
[37] gave results for unconstrained algorithms. The work
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of Sargent and Sebastian was directed more at testing the 
effect of changing the various parameters within an algorithm 
rather than the actual comparison of different methods, but 
the significant effect of these parameters on the performance 
of the tested algorithms pointed out a variability not 
considered in the past comparative studies. Himmelblau 
presented results for fifteen methods on fifteen relatively 
small scale test problems. Solution time was used as the 
criteria for evaluation and a single termination criteria 
was applied to all algorithms in an attempt to stop all 
algorithms at the same approximate level of accuracy. 
Analytically calculated gradients were supplied to all 
algorithms requiring gradient information. The results 
of this study again point out the performance of the variable 
metric algorithms of Davidon-Fletcher-Powell and Broyden- 
Fletcher-Shanno along with Fletcher-Reeves to be better 
than the performance of the other algorithms tested. Other 
papers from this conference included a comparison of several 
random search procedures by Schrack and Borowski [38] and 
a comparison of several penalty function type algorithms 
by Biggs [39]. Schrack and Borowski did not recommend that 
random search techniques be used in place of gradient search 
methods but applications such as locating starting points 
for other algorithms and for searching about the final point 
generated by another method were suggested. The study by 
Biggs involved the comparison of a standard interior and
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the successive unconstrained minimizations with a sequence of 
quadratic programming problems. The results are based on the 
solution time and on the number of function evaluations re­
quired on a series of nine test problems, three of which were 
used by Colville. Results indicate that the methods involv­
ing a sequence of quadratic programming problems can be ef­
fective. However comparison with only one interior and one 
exterior penalty function method on a set of small scale prob­
lems is in no way conclusive.

A major study directed at engineering type problems was 
conducted by Eason and Fenton [40] in 1972. In this study 
twenty nonlinear programming algorithms were tested on thir­
teen problems. All of the algorithms were collected and run 
at the University of Toronto which eliminated the need for 
the standard timing routine. Advances over previous studies 
were the use of several solution points to establish an error­
time curve which allowed a comparison of all methods at ap­
proximately the same accuracy and the use of numerically eval­
uated gradients for all gradient based algorithms. Several 
different ranking schemes were employed including those pro­
posed by Colville and Abadie and Guigou, but again conclusive 
results were not forthcoming. In this study the direct search 
methods performed significantly better than any of the gradi­
ent based methods, a fact which contradicts the results of 
most of the previous studies. The top three algorithms were 
two methods which relied on a Hooke-Jeeves pattern search and
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a method using the Geometric Simplex method of direct search. 
Eason states that this result may have been due to the small 
number of independent variables present in all of the test 
problems and the fact that no analytic gradient information 
was supplied. Both of these observations are probably valid 
to some degree, but another point is that only standard param­
eters were used for all of the codes. The direct search meth­
ods generally need only initial and final estimates of the 
step size, while the gradient methods generally require sever­
al input parameters most of which are relatively problem de­
pendent. While recommended values for these parameters are 
supplied in the users manual for almost every algorithm they 
are intended only as general starting values and in many cases 
a procedure for changing these standard parameters is supplied 
in case trouble is encountered in the solution procedure. It 
should also be pointed out that the gradient methods which 
performed the best in the Colville study, the generalized re­
duced gradient algorithms, were not included in the study by 
Eason, which may well be the major reason for the direct 
search methods relatively good performance. Furthermore the 
criteria for a method to have solved a test problem was some­
times related to the magnitude of the objective function at 
termination compared to that of the optimal objective func­
tion, and sometimes to the distance of the vector of design 
variables at termination to the optimal design variables. In 
several cases the required accuracy of solution of the design 
variables was specified so that the objective function was
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required to be accuarte to the eighth or ninth significant 
figure where any gradients would be so small that most 
gradient methods would stop before reaching this point. 
Whether any or all of these factors influenced the results 
of this study remains a matter of conjecture, but the point 
remains that the results contradicts almost all of the 
previously established results.

After Eason’s study was completed several other small 
scale studies have been conducted. A slightly different 
approach toward comparison was attempted by Larichev and 
Gorvits [41] in 1974 where both an analytical study and 
experimental study were conducted on several algorithms on 
unconstrained nonlinear valley functions. This approach 
is an interesting one, however, it is not possible to apply 
this type of analysis to the general constrained nonlinear 
programming problem since no analytical expressions may 
be developed for the convergence of an algorithm for the 
general problem. The development of new algorithms has also 
resulted in several comparisons of methods* Three such 
studies were published by Pappas and Moradi [42] in 1975-and 
Schuldt et. al. [43] and Gabriele and Ragsdell [18] in 1977. 
Unfortunately, these comparisons rated the newly developed 
algorithms with the results of the study by Eason through 
the use of the questionable standard timing routine used 
by Colville. However results indicate the new techniques 
including a direct search method by Pappas and Moradi, a new
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penalty function method by Schuldt, and above all a general­
ized reduced gradient algorithm by Gabriele and Ragsdell per­
form very well. Also the results from Gabriele and Ragsdell 
and from Schuldt indicate that the use of numerically calcu­
lated gradients does not seriously effect the performance of 
gradient based methods.

The emphasis in the review of the past comparative stud­
ies has been placed on the experimental studies. Several 
studies of theoretical convergence have been conducted such as 
those by Wolfe [44] and Luenberger [45]. The theoretical con­
vergence characteristics of the various algorithms are very 
important but they have several serious drawbacks for general 
comparison. First of all most theoretical convergence formu­
lations are based on the improvement in the design vector from 
stage to stage and are in no way related to the time required 
for each stage. Also for many algorithms a "stage" may not be 
easily defined and the manner in which a stage is defined will 
in many cases significantly alter the apparent rate of con­
vergence. Several algorithms such as the Hooke-Jeeves pattern 
search method would be difficult to classify as to the theo­
retical rate of convergence since no proof of convergence ex­
ists for such a method. Another problem is that even the 
theoretical convergence rates are problem dependent and may 
change drastically during the solution process. Also the con­
vergence rate for a method such as the generalized reduced 
gradient algorithm can be altered on a given problem simply 
by changing the initial selection of basic variables. These
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inconsistencies make the theoretical approach very difficult 
to apply which is the basic reason most of the past studies 
have been experimental in nature.

1.4 Research Objectives 
The shear number of comparative studies conducted to date 

of which those mentioned in the previous section is only at 
best a partial list may well be the best indicator of how much 
this type of information is needed. The fact remains, how­
ever, that through all of these attempts at obtaining this 
comparative information, not one has actually succeeded in 
providing consistant and conclusive comparative information.
In truth the results presented to date give only a partial 
and often contradictory idea of the relative effectiveness of 
the algorithms available to date. Different rating criteria, 
varying termination criteria, inaccurate time comparisons be­
tween different machines, the small dimensionality of most 
test problems, the inconsistent use of analytic and numer­
ically calculated gradients and the somewhat haphazard selec­
tion of algorithms all tend to cloud the picture rather than 
to bring it into focus. But even though every previous com­
parative study would seem to have several serious flaws, the 
net result is an indication of what must be done in order to 
achieve some valid comparative data. It is the major goal of 
this research to conduct a comparative study of nonlinear pro­
gramming algorithms with application to engineering design in 
such a way as to produce some useful comparative information.
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The research will be divided into four phases. These phases 
are the selection of algorithms, the selection of realistic 
design problems, experimentation and compilation of results, 
and to synthesize the results into some preliminary algorithm 
development. The study will be carefully and consistently 
conducted to avoid as many of the pitfalls of the past 
studies as is possible.
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CHAPTER 2 PROCEDURE FOR GENERATING COMPARATIVE DATA

2.1 Introduction 
It can be seen from the results of past studies that it 

is very important to set down a carefully designed procedure 
for generating and evaluating the comparative data. Before 
any data may be generated, however, several initial decisions 
must be made. These decisions include which algorithms to 
include, what test problems should be used and in general how 
the comparative data will be collected. Each of these de­
cisions is extremely important for if any phase of the com­
parative study is not given adequate attention, the value of 
the study will be greatly reduced. For this reason each of 
these initial decisions will be considered in some detail.

2.2 Selection of Algorithms 
In the selection of algorithms the main objective is to 

include as many as possible but to still keep the study to 
manageable proportions. To meet this objective, algorithms 
were solicited throughout the world and a wide selection of 
algorithms was obtained from both industry and the academic 
community. It should be noted that some of the codes which 
were initially considered were not included due to the fact 
that not everyone who was contacted agreed to participate. 
The overall response, however, was supportive and in all
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thirty-five algorithms were collected. A brief listing of 
the algorithms, their general classification and the uncon­
strained optimization technique used if any are included in 
Table 2.1. A more complete description of each of the codes 
is available in Appendix A. To simplify the terminology the 
numbering of the algorithms in Table 2.1 will be used through­
out the study. For example, the code APPROX will be referred 
to as code number four. It can easily be seen from Table 2.1 
that many of the algorithms included in the study are of the 
same basic class and even use the same unconstrained optimiza­
tion techniques. This duplication was intentional and was 
meant to insure a fair testing of each class and type of meth­
od since as Colville pointed out two algorithms which are 
theoretically the same may produce drastically different re­
sults. Of course there are many additional algorithms which 
could have been included in the study and the fact that they 
were not included is in no way a reflection on the value of 
the code. The codes included are meant to be a representative 
sample of the codes currently available.

2.3 Selection of Test Problems 
Just as it is important to obtain a wide variety of al­

gorithms, it is equally important to select a wide range of 
test problems. It is in this aspect that essentially all of 
the past comparative studies have been lacking. The problems 
to be selected should include a wide range in the number of 
variables and the number of constraints and should include
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Table 2.1 Algorithms Included in the Comparative Study .

Algorithm Class Unconstrained Search

(1) BIAS EXTERIOR PENALTY VARIABLE METRIC (DFP)
(2) SEEK1 INTERIOR PENALTY PATTERN-RANDOM
(3) SEEK3 INTERIOR PENALTY PATTERN (HOOKE-JEEVES)(4) APPROX LINEAR APPROXIMATION NONE
(5) SIMPLX INTERIOR PENALTY PATTERN (SIMPLEX)
(6) DAVID INTERIOR PENALTY VARIABLE METRIC (DFP)
(7) MEMGRD INTERIOR PENALTY MEMORY GRADIENT
(8) GRGDFP REDUCED GRADIENT VARIABLE METRIC (DFP)
(9) RALP LINEAR APPROXIMATION NONE
(10) GRG REDUCED GRADIENT VARIABLE METRIC (BFS)
(11) OPT REDUCED GRADIENT CONJUGATE GRADIENT (F-R)
(12) GREG REDUCED GRADIENT CONJUGATE GRADIENT (F-R)
(13) COMPUTE II (0) EXTERIOR PENALTY PATTERN (HOOKE-JEEVES)
(14) COMPUTE II (1) EXTERIOR PENALTY CONJUGATE GRADIENT (F-R)
(15) COMPUTE II (2) EXTERIOR PENALTY VARIABLE METRIC (DFP)
(16) COMPUTE II (3) EXTERIOR PENALTY PATTERN (SIMPLEX-HOOKE-JEEVES)
(17) MAYNE (1) EXTERIOR PENALTY PATTERN (UNIVARIATE SEARCH)(18) MAYNE (2) EXTERIOR PENALTY STEEPEST DESCENT
(19) MAYNE (3) EXTERIOR PENALTY CONJUGATE DIRECTIONS (POWELL)
(20) MAYNE (4) EXTERIOR PENALTY CONJUGATE GRADIENT (F-R)(21) MAYNE (5) EXTERIOR PENALTY VARIABLE METRIC (DFP)(22) MAYNE (6) EXTERIOR PENALTY PATTERN (HOOKE-JEEVES)(23) MAYNE (7) INTERIOR PENALTY PATTERN (UNIVARIATE SEARCH)(24) MAYNE (8) INTERIOR PENALTY STEEPEST DESCENT(25) MAYNE (9) INTERIOR PENALTY CONJUGATE DIRECTIONS (POWELL)(26) MAYNE (10) INTERIOR PENALTY CONJUGATE GRADIENT (F-R)
(27) MAYNE (11) INTERIOR PENALTY VARIABLE METRIC (DFP)(28) SUMT IV (1) INTERIOR PENALTY SECOND ORDER (NEWT0N-RAPHS0N)(29) SUMT IV (2) INTERIOR PENALTY SECOND ORDER (NEWTON-RAPHSON)(30) StMT IV (3) INTERIOR PENALTY STEEPEST DESCENT(31) SUMT IV (4) INTERIOR PENALTY VARIABLE METRIC (DFP)(32) MINIFUN (0) MIXED PENALTY CONJUGATE DIRECTIONS (POWELL)
(33) MINIFUN (1) MIXED PENALTY VARIABLE METRIC (BFS)(34) MINIFUN (2) MIXED PENALTY SECOND ORDER (NEWTON-RAPHSCN)(35) COMET EXTERIOR VARIABLE METRIC (BFS)
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problems with equality as well as inequality constraints.
The problems should also include a wide range in the degree 
of nonlinearity of the objective function and the constraints. 
These were the basic considerations in selecting the test 
problems for the study. Several problems were selected from 
past studies to give the study a sound historical foundation. 
These problems were included basically as initial test prob­
lems to gain familiarity with each of the algorithms/ although 
the set of problems studied by Dembo [46] in a comparison of 
geometric programming algorithms included some interesting 
engineering applications. Other problems were selected from 
a wide range of additional engineering applications and a 
total of thirty test problems will be considered, seven of 
which have not appeared in any previous comparative study. A 
brief listing of the problems and the number of variables and 
constraints is contained in Table 2.2. A detailed description 
including complete starting and solution data along with a 
fortran listing of each problem is included in Appendix B. 
Thirty test problems may seem like a rather limited test set 
but to simply run each of the thirty-five algorithms once on 
the thirty test problems involves over one thousand individual 
runs. The computational cost and simply the time involved in 
collecting data on a larger test set is infeasible.

The problems range from two to forty-eight design 
variables and from four to seventy-five constraints including
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Table 2.2 Problems Included in the Comparative study.

Problem N K L Variable Bounds

(1 EASON #1 5 10 0 5
(2 EASON #2 3 2 0 6
(3 EASON #3 5 6 0 10
(4 EASON #4 4 0 0 8
(5 EASON #5 2 0 0 4
(6 EASON #6 7 0 4 12
(7 EASON #7 2 1 0 4
(8 EASON #8 3 2 0 6
(9 EASON #9 3 9 0 4

(10 EASON #10 2 0 0 4
(11 EASON #11 2 2 0 4
(12 EASON #12 4 0 0 8
(13 EASON #13 5 4 0 3
(14 COLVILLE #2 15 5 0 15
(15 COLVILLE #7 16 0 8 32
(16 COLVILLE #8 3 14 0 6
(17 DEMBO #1 12 3 0 24
(18 DEMBO #3 7 14 0 14
(19 DEMBO #4 8 4 0 16
(20 DEMBO #5 8 6 0 16
(21 DEMBO #6 13 13 0 26
(22 DEMBO #7 16 19 0 32
(23 DEMBO #8 7 4 0 14
(24 WELDED BEAM 4 5 0 3
(25 COUPLER CURVE 6 4 0 6
(26 WHIRLPOOL 3 0 1 6
(27 SNG 48 1 2 72
(28 FLYWHEEL 5 3 0 10
(29 AUTOMATIC LATHE 10 14 1 20
(30 WASTE WATER 19 1 11 38

N = number of design variables.
K = number of inequality constraints. 
L = number of equality constraints.
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variable bounds. Larger problems were considered but were 
eliminated due to the excessive computational cost of each 
run. Also consideration had to be given to the availability 
of solution information to allow for comparison, and prob­
lems which contained many local optima were excluded since 
it is very difficult to compare results at different 
solutions.

It should be noted that this problem set is much larger 
than that of any previous comparative study and the problems 
selected cover a wide range of applications including 
current industrial applications. The results on this 
problem set should then be representative of the type of 
problems the engineering designer might face.

2.4 Collection of Data
Even after the algorithms and test problems had been 

selected, considerable work and several critical decisions 
had to be made before the accumulation of test data could 
commence. A major amount of time and effort was required 
to convert all of the test codes to run on the Purdue 
University CDC 6500 Computing System. The basic change 
involved conversion of all double precision arithmetic to 
single precision. This was done since the number of signifi­
cant digits available on the CDC 6500 using single precision 
arithmetic is greater than the number of significant digits 
available on many other machines using double precision
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arithmetic. This conversion was carried out for two basic 
reasons. First it assures uniformity in all of the methods 
with respect to arithmetic operations. This is important 
because the time required to perform an arithmetic operation 
in double precision may be significantly larger than per­
forming the same operation in single precision. The 
second advantage of the conversion to single precision is 
in the storage space saved in the compilation of the program. 
In several cases this resulted in significant storage savings 
and allowed increasing the size of the problem the code 
could handle. Another programming change was made to all 
gradient based methods which required analytical gradients. 
These codes were converted to calculate gradient informa­
tion numerically using a forward difference approximation. 
This conversion was necessary because several of the test 
problems vere the result of a simulation making analytical 
derivatives very difficult if not impossible to calculate. 
Another point in favor of numerical derivatives is the 
amount of work involved in calculating the derivatives and 
in inputting these derivatives to the algorithm. Supplying 
analytical gradients for a ten variable, ten constraint 
problem involves supplying 110 gradient functions for a 
method requiring first derivatives and over 700 gradient 
functions for a method requiring second derivatives. This 
work is simply too time consuming and the possible source 
of too many input errors to even be considered for the
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general design environment. Another programming change 
involved removing all printed output from the basic itera­
tive loop of each algorithm. This was done to eliminate 
the inclusion of print time in the total solution time.
If all printing was delayed until the final solution, 
however, a significant increase in the required storage 
would be required, for at each stage the intermediate 
output would include the vector of design variables, the 
value of the objective function and constraints and the 
solution time to this point. What would be desirable would 
be to calculate the difference in time between the beginning 
and end of each stage and to print out all intermediate 
output after the call from the timer for the stage just 
finished and before the call to the timer for the next 
stage. The only disadvantage with this procedure is that 
a timing error is accrued with each stage which could 
significantly effect the final solution time. In spite of 
this drawback this timing procedure has been implemented 
in each of the algorithms through the use of the CDC 6500 
systems library routine SECOND which returns the elapsed 
central processor time in seconds since the start of the 
job. By placing a call to subroutine SECOND before and 
after each solution stage the time required for each stage 
can be calculated from the time difference in the two 
system subroutine calls. The possible errors involved in
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computing the time in this fashion are considered in the 
next section.

The final and probably the most difficult problem to 
handle is what to do about the input parameters to the 
codes such as initial penalty parameters and line search 
criteria. Here a middle of the road approach was followed 
as compared to the approaches of Eason and Fenton and 
Colville. Eason and Fenton used only the recommended 
values for the input parameters and if the solution was 
not reached to the desired level of accuracy with these 
parameters the code was considered to have failed on that 
problem. Colville, on the other hand, allowed the developer 
of each algorithm a free hand at adjusting the input 
parameters with no upper limit on the number of trials a 
code was allowed on each problem. Neither of these ap­
proaches would seem to be representative of real world 
applications. The approach used by Eason and Fenton is 
convenient in the sense that each code would only have to 
be run once on each problem, but the input parameters are 
in general much too problem dependent to allow for a single 
value to be used throughout the study. No one could 
practically expect an engineering designer to abandon his 
attempt at the solution of a problem after a single run.
This is especially true if the development of the mathe­
matical model has taken a significant amount of time. At 
the other end of the spectrum the approach used by Colville
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may be considered as an indication of the best possible 
performance for each algorithm on each problem. Again 
this is not the type of performance an average user would 
expect in everyday use. To simulate actual usage an 
initial run was made using the recommended values for the 
input parameters. If a normal, satisfactory termination 
was not obtained after this run an attempt was made to 
adjust the input parameters using the information con­
tained in the users manual as a guide to the adjustment.
It should be noted that no attempt was made to decrease 
solution times by this adjustment of the parameters
since once normal termination was achieved with all active

-5constraints reasonably tight (10 or smaller), the run was 
accepted for the study. The engineering judgement required 
to adjust the input parameters was developed by running 
each code on the Eason and Fenton and Colville problems 
before attempting to solve any of the more difficult 
problems.

2.4.1 Timing Accuracy 
The system subroutine SECOND returns the execution time

-3to an accuracy of 10 seconds. This means that the maximum 
error which can occur on the difference of two consecutive

_3calls would be 10 seconds. This maximum error would 
occur if the first call occurred just before the clock was 
updated and the second call occurred just after the clock
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was updated or vice versa. For any problem which requires 
a significant amount of time for a stage to be completed 
this error is insignificant. For example if one tenth of 
a second is required for an algorithm to complete a stage 
the maximum error would be only one percent. The problem 
becomes more significant when the total solution time is 
small and many stages are required. This situation does 
occur on several of the Eason and Fenton problems with the 
reduced gradient codes which produced extremely fast 
solution times for these problems. The worst case was 
found to be for algorithm 11 on problem number five.
On this problem algorithm 11 completed twenty-six stages 
in a total of .142 seconds. If the maximum error occurred 
at each stage in the same direction (i.e., either always posi­
tive or always negative error) the total timing error 
would be almost 20%. This error although only occurring 
on two or three problems would still be unacceptable. To 
determine a more accurate estimate of the expected error, 
ten consecutive runs for OPT on problem number five were 
made. The computed time for each of these runs is given 
in Table 2.3, along with the average time and the standard 
deviation for the runs. The standard deviation was only 
.002 seconds. If a normal distribution is assumed then 
even allowing for a time differing from the average by 
two standard deviations would produce an error of less 
than 3%. If the distribution were truly normal the
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Table 2.3 Consecutive Runs of OPT on Problem Number Five 
After Twenty-six Stages.

Run Number Solution Time
1 .1402 .1433 .142
4 .141
5 .146
6 .144
7 .139
8 .144
9 .143

10 .141

Average Time = .1423
Standard Deviation =* . 002
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probability of a run differing from the average by more 
than two standard deviations would be extremely small. So 
even if the distribution only approximates a normal distri­
bution significant errors could not be expected from this 
manner of timing. There are several system dependent 
factors which can also influence the time required to 
perform an identical set of calculations. The Purdue 
Computing System consists of two CDC 6500's sharing the 
same central memory, and although identical, their speed 
differs by a very small amount. Also the system load may 
have an effect on how long certain operations take. To 
obtain an estimate of the errors introduced by these fac­
tors the standard timing routine suggested by Colville was 
run a total of twelve times. Six runs were made in the 
middle of the afternoon when the computing load was very 
heavy. The other six runs were made late at night when 
the computing load was very light. Each sequence of runs 
included runs on both of the CDC 6500 machines. For all 
of these runs the average time was 49.89475 seconds and 
the standard deviation was .12984 seconds. Again allowing 
for two standard deviations the error involved would be 
less than 1%. This small level of error would have to be 
regarded as being inconsequential.
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2.5 Data Reduction
Once each algorithm had been run on a problem 

intermediate data including f(x), g (x), h(x) and the solution 
time was available at each stage of the solution procedure.
In order to compare the relative effectiveness of different 
algorithms which may follow completely different paths to 
the solution some measure of the accuracy of any given 
point relative to the known solution must be determined.
This is necessary so that all of the codes may be compared 
at some uniform level of accuracy on each problem. Bason 
and Fenton suggested two accuracy criteria. The first may 
be defined as the relative error in the objective function. 
This accuracy criterion may be expressed as:

In this expression f(x) is the value of the objective 
function at any point x, and f(x*) is the optimal value of 
the objective function. The other accuracy criterion sug­
gested by Bason and Fenton is the relative error in the x 
vector. The expression is given by

If (x) -f (x*) 1 for f(x*) ?0 (2.1)
|f (x*) |

or
ef = |f(x)| for f(x*) = 0 (2.2)

2 (2.3)
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where
*

t(xi) for x^* j£ 0 (2.4)

or t (xi) for x .* = 0 x (2.5)

Here x^ is the value of the variable for any point x
“it t i l .and x^ is the optimal value of the i variable. By

plotting either of these accuracy criteria versus time
for all algorithms on a given problem, the time for each
algorithm to reach a specified level of accuracy may be
closely approximated. For example the relative accuracies
for three algorithms are plotted for a hypothetical problem
in Figure 2.1. Each circled point represents the end of a
stage for a given algorithm. Once the required level of
accuracy for the problem has been determined then the
time for each algorithm to reach this level of accuracy
may be read directly from this plot. For example if the
relative accuracy for the hypothetical problem is set at 

-410 the solution time for algorithm A is found to be 
approximately 8.6 seconds from Figure 2.1.

Each of the relative error criteria used by Eason and 
Fenton have certain advantages. The expression for the 
relative error in the x vector can be related to the rate 
of convergence of an iterative process (47]. On the other 
hand, the objective function is defined as quantifying the
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Figure 2.1 The Relative Accuracy of Solution versus 
Time for a Hypothetical Problem.
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"goodness" of a design, so the relative error in the objec­
tive function would seem to be an obvious choice for an 
accuracy or error criterion. Of course the relative error 
in f {x) is related to the design variables and thus it is 
also related to the relative error in the x vector.
However a one to one correspondence cannot be made which
is consistent for all problems. For example a value for

-5 -3e- of 10 may correspond to a value for e of 10 for one
I» X

" 3problem and for another problem a value for of 10
-4may correspond to a value for e of 10 . Eason and Fenton

used a value of the relative error in the objective
function to obtain solution times for some problems and
the relative error in 'the x vector for the other problems.
Even for problems where the same error criterion was used
the required level of accuracy was not held constant in the
Eason and Fenton study. For example on one problem the
required relative error in the x vector was specified to 

-3be 3 x 10 and for another problem it was specified to be 
-510 . This is another inconsistency in the Eason and

Fenton study, for this means that the level of required
accuracy was not held constant for all of the problems.
The percentage error in the solution times generated by
using the relative error in the objective function at 

-4ef - 10 compared to the solution times generated by 
using a value of ex at the same approximate accuracy level 
is presented for five algorithms on five of the initial
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test problems in Table 2.4. To remove any bias due to slight 
inaccuracies in the level of the relative required accuracies 
used for e,. and e , the solution time for each algorithm was 
normalized by dividing by the average solution time of all 
five methods on that problem using the same error criteria. 
The results appear to be highly problem dependent but in 
several cases the difference in the normalized solution 
times is almost 14%. To avoid this inconsistency only one 
relative accuracy criterion will be used and the reported 
solution times for all algorithms on every problem will 
be at the same level of accuracy. The relative error in the 
objective function was selected as the basis for the accuracy 
criterion. This selection was made for several reasons.
First of all the objective function represents the quality 
of a candidate design and if a wide range of points about 
the optimal design vector produce little change in the 
objective function, a code should not be penalized for 
not precisely zeroing in on the optimal point. Secondly 
for several of the test problems there are several com­
pletely different combinations of the design vectors which 
produce the optimal value of the objective function. This 
makes no difference to a criterion based upon the relative 
value of the objective function but it does require special 
consideration for a criterion based upon the relative error 
in the design vector.
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Table 2.4 Percentage Deviation for the Average Normalized Times Based on
e _ and e . f x

Algorithm Problem #1 Problem #3 Problem #7 Problem #11 Problem #14

<9> 4.0% 9.4% 2.8% — 7.7%
(11) 5.3% 0.0% 13.7% 0.0% 13.4%
(13) .91% 11.4% 8.8% 1.5ft 9.8%
(21) 4.6% 5.2% 13.8% 1.4ft 8.4%
(31) 3.1% 5.8% 3.2% .32% 1.1ft
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Unfortunately the relative error in the objective 
function alone does not provide complete information on 
the value of an intermediate point. Consider the contour 
plot for the two variable problem shown in Figure 2.2. For 
this hypothetical problem both points x ^  and would
have an of 2. However this does not give a clear indi­
cation of the relative value of the two points. If 
the solution procedure was stopped at the point x ^  the 
solution would be of no use since a constraint is con­
siderably violated. On the other hand if the solution at
(2)x was accepted a feasible design would result. This 

problem would not be encountered if all algorithms remained 
within the feasible region at all times but this is simply 
not the case. Therefore if the relative error is to give 
a complete indication of the value of an intermediate point 
some indication of constraint violation must be included. 
This may be accomplished in several ways. One way could 
be to consider the relative error in the generalized 
lagrangian function. The generalized Lagrangian function 
may be expressed as:

_____  _ L _ K _
L(x,u,v) = f(x) + I v. h. (x) - I u.g. (x) (2.6)

j=l 3 3 j=<L 3 3

where u and v represent the Lagrange Multipliers. The 
relative error may then be defined as
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Figure 2.2 A Contour Plot of a Two Dimensional 
Problem.
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E = IL(x,u*fv*)|
L |L(x*fu*,v*)j

(2.7)

In this expression u* and v* are the values of the Lagrange 
Multipliers at the optimal solution. Equation 2.6 may be 
thought of as the relative error in the objective function 
with an additional term added on to penalize constraint 
violations with the Lagrange Multipliers acting as weighting 
factors for the constraint violations. Unfortunately, 
there are two problems with this expression for the rela­
tive error. First of all the Lagrange Multipliers u^* are 
zero for all g^(x*) which are not active at the solution. 
This means that no penalty is added to the relative error 
for a violation of a constraint which is not active at the 
solution. The second problem is that in many cases for
the test problem set under consideration the Lagrange

-2 -3Multipliers are very small (10 or 10 ) and do not add
a significant amount to the relative error for any con­
straint violations. Both of these drawbacks may be elim­
inated if the weighting factors are chosen to be unity.
For this case the total relative error may be defined as:

Agaii) the bracket operator is used to indicate that the 
summation of the inequality constraints only includes the

K L
et = e. + I <g.(x)> + I |h.(x)| 
* r j=l 3 j=l 3 (2.8)
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violated subset. A value or 10 ** in the total error as
given by Equation 2.8 guarantees that the relative error in
the objective function and all of the constraints violations

-5are less than 10 . This straightforward total error crite­
rion was applied uniformly to all of the test data. Plots of 
the total relative error for the algorithms on each problem 
may be found in Appendix C.

2.5.1 Elimination of Algorithms 
It was apparent after running the algorithms on the

Eason and Fenton and Colville problems that some algorithms 
were not performing well. These codes solved very few of 
these relatively easy test problems and even when a problem 
was solved an inordinately large amount of computer time was 
required. For these reasons any code which did not solve at 
least seven of these fourteen test problems was not considered 
further. Table 2.5 lists the number of problems in the initial 
problem test set solved by each of the algorithms considered 
for the study. It should be noted that for this table any 
algorithm which required more than three times the average 
solution time of all of the algorithms on a given problem was 
considered to have failed on that problem. The codes elimin­
ated were algorithms 2, 4, 5, 6, 7, 17, 18, 23, 24, 25 and 30.
This reduced the number of algorithms to a total of twenty- 
four. It should be noted however, that no renumbering of the 
remaining algorithms was done and the numbering scheme of 
Table 2.1 still holds.
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Table 2.5 Number of Problems Solved for the Initial Test 
Problem Set.

Algorithm Problems Solved Algorithm Problems Solved

(1) 12 (19) 11(2) 5 (20) 10
(3) 8 (21) 12(4) 6 (22) 7(5) 6 (23) 4(6) 5 (24) 4(7) 2 (25) 3(8) 14 (26) 10
(9) 9 (27) 11(10) 14 (28) 8

(11) 13 (29) 9(12) 14 (30) 2(13) 12 (31) 11(14) 8 (32) 12(15) 10 (33) 11(16) 10 (34) 8(17) 4 (35) 11(18) 5
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CHAPTER 3 RESULTS

3.1 Introduction 
Many attempts have been made at developing a relative 

ranking criterion for comparing nonlinear programming 
algorithms. These criteria have been based on many dif­
ferent factors such as the number of problems solved or 
partially solved, some weighted average of execution times, 
the total running cost including input and output units 
and core usage or the estimated preparation times. The 
use of different rating criteria can significantly effect 
the relative rankings of the algorithms. This was demon­
strated in the Eason and Fenton study where the relative 
rankings of the algorithms changed considerably depending 
upon which rating criterion was used. To avoid this 
problem careful consideration must be given to what 
characteristics a "good" algorithm should exhibit. Cer­
tainly the ability to solve problems must be considered to 
be the main characteristic of such an algorithm since this 
is the basic function of any nonlinear programming algorithm. 
But this quality alone does not represent the total value 
of an algorithm. Given enough computer time most algorithms 
will solve a fairly large set of problems. To generate a 
total picture of the relative effectiveness of an algorithm
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some consideration must be given to the computational time 
required for the solution of a test problem. The fact that 
one algorithm solved a specific problem in seven seconds 
while another required fifteen seconds is not significant in 
itself, but if the same algorithm consistently produced lower 
solution times considerable time savings could result in gen­
eral usage. This would especially be true for large scale 
problems or for problems where the objective function or con­
straints require a considerable amount of time to evaluate. 
Taken by itself, however, the relative solution times o€ the 
different algorithms is not sufficient to comparatively 
rank algorithms either since one code which was extremely 
fast but only solved a few problems could rate well using 
this criterion. These basic criteria, the number of prob­
lems solved and the relative solution time, may be seen 
to be potentially competing objectives and a criterion 
based solely one or the other may not be a good performance 
indicator. Rankings involving the ease of use or prepara­
tion time were not considered since no algorithm tested 
could be considered to be significantly more difficult 
to use or required a significant amount of preparation 
time to input a problem. With these considerations in 
mind a relative ranking criterion based on the number of 
problems solved with a qualification on the relative 
solution times will be developed and applied to the 
comparative test data. Results based on this ranking
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criterion will then be compared to results generated by ap­
plying the rating schemes used by Eason and Fenton.

3.2 Rating Criterion 
One method for dealing with competing design 

objectives is to treat the major objective as being 
the only objective and to treat any secondary objectives 
as constraints. This will be the approach used to develop 
the rating criterion to rank the algorithms in this study. 
Since the ability to solve a large number of problems in 
a reasonable amount of time is the desired ranking criteria, 
the rankings will be based on the number of problems 
solved within a series of specified limits on the relative 
solution times. The limits on the solution times will be 
based on a fraction of the average time for all algorithms 
on each problem. Each solution time for a problem was 
normalized by dividing by the average solution time on that 
problem. This produces a low normalized solution time for 
an algorithm with a relatively fast solution time and a 
high normalized solution time for an algorithm with a 
relatively slow solution time. This normalization 
essentially equalizes the time ratings on the various 
problems so that the effectiveness of an algorithm on a 
problem which required a very small amount of time may be 
directly compared to the effectiveness on a problem that 
required a large amount of computational time. The number
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of problems solved may now be directly related to the frac­
tion or percentage of the average solution time of all of 
the methods tested on each problem. This relationship is 
demonstrated for all algorithms which solved at least half
of the problems in the test set in Figure 3.1 for an

-4accuracy level of 10 in et* It should be noted that 
problems 9, 13, 21, 22, 28, 29 and 30 were not included in 
this analysis since less than five algorithms generated 
the same solution point. A discussion of the results on 
these problems is presented in section 3.5. In Figure 3.1, 
the number of problems solved at any fraction of the aver­
age solution time may be determined by drawing a vertical 
line at that value of the fraction of average time and 
recording the intersection with each algorithm. It can 
be seen from Figure 3.1 that the performance of the algorithms 
varies greatly, but the codes which have a steep slope and 
attain a high value in the ordinate axis have both a good 
problem solving capability and a relatively fast solution 
time on the majority of the problems.

3.3 Relative Rankings 
Four values of the fraction of average solution time 

will be considered for the relative rankings. These values 
are 25%, 75%, 150% and 250%. The 25% rating is to indicate 
the codes which are extremely fast and should be considered 
for use on large and difficult problems. The 75% rating is
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perhaps the most informative rating as it demonstrates 
the performance of the algorithms at a slightly better than 
average solution time. The codes that perform well at this 
rating could be considered to be the algorithms best suited 
for general usage. The final two levels, the 150% and 
250% ratings were necessary to distinguish between some 
of the slower but effective algorithms. Algorithms which 
rate high at these levels but not at the 75% level could be 
considered robust but would require a considerable reduction 
in the average solution time to be recommended for general 
use. The performance for the values of the fraction of 
average time will be considered for solutions at accuracy 
levels of Efc = 1(T4, et = 10“5 and et = 10“6.

3.3.1 Relative Ranking for et = 10-4 
The number of the twenty-four remaining problems solved 

at fractions of the average time from .25 to 2.50 in intervals 
of .25 may be found listed in Table 3.1. From this table the 
percentage of the problem set solved at each rating interval 
can easily be calculated. The relative rankings for the 25% 
rating are given in Table 3.2. From Table 3.2 it can be seen 
that in general most methods solve only a very small per­
centage of total problem set within twenty-five percent of 
the average solution time. The exceptions are algorithms 
10, 11, and 12, all of which solved over 60% of the test 
problem set at this level. All three of these algorithms
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Table 3.1 Number of Problems Solved for Various Average 
Solution Time Limits for et - 10“ .

Algorithm .25tavg
Number of Problems Solved 

.50tavg .75tavg l.OOtavg l.SOtavg 2.50tavg

1 0 9 14 17 19 20
3 0 1 2 3 6 10
8 10 15 17 17 18 18
9 12 13 13 14 14 16

10 15 17 19 19 19 19
11 16 21 21 21 21 21
12 14 18 20 23 23 23
13 2 7 9 11 13 15
14 2 4 6 6 8 9
15 4 9 11 15 15 15
16 1 5 7 8 9 11
19 0 0 2 3 7 11
20 1 4 10 10 11 1121 7 13 14 16 16 16
22 2 4 7 8 8 9
26 0 1 4 6 9 10
27 2 7 11 14 14 17
28 0 0 0 0 3 9
29 0 0 0 1 2 7
31 0 1 3 5 9 13
32 0 0 0 4 8 15
33 0 2 4 7 13 15
34 0 1 2 4 8 10
35 0 2 5 7 9 15
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Table 3.2 Relative Rankings for Algorithms for 25%
Average Time Limit for et = 10“4.

Algorithm % of Problems Solved

11 69.6
10 65.2
12 60.9
9 52.2
8 43.5

21 30.4
15 17.4
14 8.7
13 8.7
27 8.7
22 8.7
26 4.3
16 4.3
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are generalized reduced gradient codes. The other algorithms 
which rated high at the 25% rating were algorithms 9 and 
8 a repetitive linear programming algorithm and another 
generalized reduced gradient algorithm. The only other 
algorithm to reach at least a 30% ranking was algorithm 21, 
an exterior penalty method using the Davidon-Fletcher-Powell 
technique to solve the sequence of unconstrained problems.

The relative rankings for the 75% rating are presented 
in Table 3.3. Again the top four algorithms are all 
generalized reduced gradient type methods. These algorithms 
are followed by several exterior penalty function methods 
and the repetitive linear programming method RALP. The 
highest rating for an interior penalty function was a 37.8% 
rating achieved by algorithm 27. The relative rankings 
for the 150% and 250% ratings are presented in Tables 3.4 
and 3.5. The main point to note in these Tables is that 
none of penalty function methods with the exception of 
algorithm 1 rate as well even at these levels as the three 
generalized reduced gradient algorithms 10, 11, and 12 
did at the 75% rating.

3.3.2 Relative Rankings for = 10  ̂ and e = 10 **
Table 3.6 presents the number of problems solved at

various fractions of the average solution time for an
«5accuracy in the total error of 10 . Rankings for the

25%, 75%, 150%, and 250% ratings are presented in
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Table 3.3 Relative Rankings for Algorithms for 75%
Average Time Limit for et = 10“ .̂

Algorithm % of Problems Solved
11 91.312 87.010 82.6
8 73.91 60.921 60.99 56.5

15 47.8
27 47.8
20 43.5
13 39.1
16 30.4
22 30.4
14 26.135 21.7
26 17.4
33 17.4
31 13.0
19 8.7
34 8.7
3 8.7

others 0
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Table 3.4 Relative Rankings for Algorithms for 150% 
Average Time Limit for et = 10“ .

Algorithm % of Problems Solved
12 10011 91.3
1 82.6

10 82.68 78.3
21 69.6
9 65.2

15 65.2
27 60.9
13 56.5
33 56.5
20 47.816 39.1
31 39.1
35 39.1
26 39.1
14 34.822 34.8
32 34.8
34 34.8
19 30.4
3 26.1

28 13.0
29 8.7
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Table 3.5 Relative Rankings for Algorithms for 250%
Average Time Limit for = 10-4.

Algorithm % of Problems Solved
12 100
11 91.31 87.0
10 82.6
8 78.3

27 73.9
9 69.6

21 69.6
15 65.2
13 65.2
32 65.2
33 65.2
35 65.2
31 56.5
16 47.8
19 47.8
20 47.8
3 43.5

26 43.8
34 43.5
14 39.1
22 39.1
28 39.1
29 30.4
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Table 3.6 Number of Problems Solved for Various Average
Solution Time Limits for e. = 10"5.t

Algorithm .25tavg Number of Problems Solved 
.SOtavg ,75tavg l.OOtavg 1.50tavg 2.50tavg

1 0 5 9 10 10 11
3 0 1 2 2 3 7
8 11 14 15 16 16 17
9 11 12 12 12 14 15

10 16 17 19 19 19 19
11 15 20 21 21 21 2112 12 18 20 23 23 23
13 1 7 8 9 10 10
14 2 4 5 5 6 6
15 2 8 10 12 13 14
16 1 4 6 7 8 9
19 0 0 2 4 5 6
20 0 3 6 6 6 6
21 5 9 11 11 11 1122 1 2 2 5 5 5
26 0 1 3 5 8 8
27 0 3 9 11 13 14
28 0 0 0 1 2 8
29 0 0 0 0 2 7
31 0 1 2 4 8 12
32 0 0 0 0 4 11
33 0 1 4 5 11 14
34 0 1 1 3 6 10
35 0 2 4 7 8 14
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Tables 3.7 through 3.10. These rankings basically demon­
strate the same trends as did the rankings for the accuracy 

-4in m  10 . Throughout the rankings the generalized
reduced gradient algorithms dominate with a larger gap 
developing between .the reduced gradient algorithms and 
the penalty type methods. As the accuracy criteria is 
raised to an et of 10 ®, the performance of all algorithms 
decreased. This is to be expected for most algorithms 
are not able to obtain this increase of required accuracy 
in the objective function and also maintain a sum of 
constraint violations of less than 10""̂ . Again the excep­
tion may be seen to be the reduced gradient algorithms 
which still maintain their relative high percentage of 
problems solved at all relative rankings as demonstrated 
in Table 3.11.

3.4 Comparison with Other Ranking Schemes 
Eason and Fenton proposed several rating schemes to 

rank the algorithms in their comparative study. The first 
criterion used was simply the total number of problems 
solved which would be closely related to the ranking used 
in this study at the 250% of the average solution time 
rating. Several other rating schemes which involved the 
solution times in some weighted fashion were also used. 
These criteria involved the average ratio of execution time 
to minimum execution time, the average ratio of execution
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Table 3.7 Relative Rankings for Algorithms for 25%
Average Time Limit for = 10*"5.

Algorithm % of Problems Solved
11 69.6
10 65.2
12 52.28 47.8
9 47.8

21 21.7
15 8.7
14 8.7
13 4.3
16 4.3
22 4.3
others 0



www.manaraa.com

Table 3.8 Relative Rankings for Algorithms for 75%Average Time Limit for et = 10“5.

Algorithm % of Problems Solved
10 91.312 87.0
11 82.68 65.2
9 52.2

21 47.8
15 43.5
1 39.1

27 39.1
13 34.8
16 26.1
20 26.1
14 21.733 17.4
35 17.4
26 13.0
3 8.7

19 8.7
22 8.7
31 8.7
34 4.3

L others 0
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Table 3.9 Relative Rankings for Algorithms for 150%
Average Time Limit for et = 10 .

Algorithm % of Problems Solved
12 100
11 91.310 82.68 69.6
9 60.9

15 56.527 56.5
21 47.8
33 47.81 43.5
13 43.516 34.8
26 34.8
31 34.8
35 34.8
14 26.1
20 26.134 26.1
19 21.7
22 21.732 17.4
3 13.0

28 8.729 8.7
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Table 3.10 Relative Rankings for Algorithms for 250%
Average Time Limit for = 10"*.

Algorithm % of Problems Solved
12 10011 91.310 82.6
8 73.9
9 65.215 60.927 60.933 60.9

35 60.9
31 52.2
1 47.8
32 47.8
21 47.8
13 43.5
34 43.5
16 39.126 34.8
28 34.8
29 30.4
3 30.4

14 26.1
19 26.1
20 26.122 21.7
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Table 3.11. Number of Problems Solved for Various Average 
Solution Time Limits for = 10“®.

Algorithm .25tavg
Number of 

.50tavg .75tavg
Problems
l.OOtavg

Solved
1.50tavg 2.50tavg

1 0 5 8 9 9 9
3 0 0 0 9 1 2
8 9 11 11 13 14 16
9 4 6 6 6 8 9

10 11 13 14 14 14 14
11 9 12 13 15 15 15
12 8 13 14 15 17 17
13 1 4 5 5 5 5
14 2 4 5 5 6 6
15 2 6 8 9 10 10
16 2 5 5 5 7 7
19 0 0 2 4 5 6
20 0 1 4 4 4 4
21 2 5 5 6 6 6
22 0 1 1 3 4 4
26 0 0 3 3 6 6
27 0 1 3 6 8 9
28 0 0 0 0 1 8
29 0 0 0 0 0 8
31 0 1 2 2 8 11
32 0 0 0 1 5 7
33 0 1 4 5 7 12
34 0 1 1 4 5 8
35 0 1 6 6 8 11
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time to mean execution time and the sum of execution times. 
The first ranking system involving the average ratio of 
execution times to the minimum execution time seeks to 
compare each method with a hypothetical method which would 
be fastest on every problem. This ranking was used first 
in the study conducted by Abadie and Guigou and may be. 
define as

Here tap represents the solution time of method a on prob­
lem p, mina (tap) represents the lowest solution time of 
all of the methods which solved problem p, and SI repre­
sents the total number of problems solved by algorithm a. 
The second ranking system which involves the average ratio 
of execution times to the mean solution time may be defined 
as

This ranking criteria is very similar to the first system 
described with the exception of the minimum time on problem

(3.1)

where

m m (3.2)

(3.3)

where

(3.4)
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p being replaced by the mean time on problem p. Both of 
these ranking criteria were meant to given an indication 
of how well each code compared relative to the other 
algorithms in the study but neither rating scheme gives an 
indication of how many problems were solved and a code which 
solved only a very few problems could rate very high using 
these criteria. The third ranking scheme proposed by 
Eason and Fenton is simply the sum of the execution times 
and may be represented by

When an algorithm failed to solve a problem a time equal 
to twice the slowest execution time recorded for that 
problem was substituted for tap in the summation. The 
test data was reevaluated using these rating criteria 
and the results are presented in Table 3.12. The ratings 
still show methods 10 and 11 to be the best by almost a 
two to one margin over method 12. All three are generalized 
reduced gradient algorithms but it should be noted that 
only method 12 solved all of the problems. Also in the fap 
rating method 22 ranks 3 , even above method 12, while in
the fap ratings method 22 would rank ninth. It is interesting 
to note that method 22 is an exterior penalty function using 
a pattern search to solve the unconstrained minimization prob­
lems and only solved nine out of the twenty-three problems.

Te = I fcap (3.5)
P
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Table 3.12 Eason and Fenton Ratings for e. = 10- .̂

Algorithm fap fap Te
1 .673 10.25 641
3 1.475 22.65 1901
8 .588 5.19 8019 .632 9.94 1256

10 .151 1.12 66011 .175 1.57 39612 .299 3.00 295
13 .739 12.33 139014 .652 8.08 1895
15 .498 6.16 1512
16 .713 13.99 1804
19 1.574 22.69 1862
20 .559 9.33 1664
21 .359 5.78 122022 .613 2.75 1605
26 1.453 19.81 1981
27 .654 12.98 108728 1.989 17.17 1984
29 2.204 46.24 1971
31 1.764 27.15 134932 1.809 40.02 1550
33 1.471 34.60 1377
34 1.962 45.31 1715
35 ' 1.993 36.43 1366
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The rating based on the total execution times simply 
reflects the number of the more difficult problems solved 
since on a difficult problem the penalty of twice the 
slowest time is as hard to overcome. The ratings for this 
criterion follow very closely to the number of problems 
solved with the reduced gradient algorithms first and with 
algorithm 1 rating very high which contradicts this method's 
poor showing on the first two rating criteria. All in 
all, however, it is clear that even with the inconsistencies 
generated in the rating criteria used by Eason and Fenton 
that the generalized reduced gradient algorithms rank very 
well. This is simply because the reduced gradient algorithms 
solve a large number of problems in a relatively small amount 
of computational time and will show up well in almost any 
kind of rating system.

3.5 Additional Problems
The problems not included in the relative rankings 

should still be considered, for although very few codes 
solved these problems many made significant progress or 
at least found feasible points. Several of the problems 
have many local minima and others had a very small feasible 
region making relative comparisons very difficult. There­
fore each problem will be considered individually and the 
performance of each algorithm will be noted. Complete prob­
lem descriptions and references may be found in Appendix B.
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3.5.1 Problem Number Nine
Problem number nine was used in the comparative study 

conducted by Eason and Fenton. It involves the design of 
a chemical reactor and has three design variables, nine 
functional constraints, and upper and lower bounds on two 
of the variables. The best solution reported by Eason and 
Fenton had an objective function value of -4.2446134. No 
algorithm in this study found a point near this solution. 
However when several algorithms were started from this 
point an unbounded solution was found for which the temper­
ature drop in the cooling coil became infinite. An 
additional constraint was placed on the maximum temperature 
drop in the cooling coil of 114 degrees and the solution 
reported by Eason and Fenton then became a local minimum.

The best solution found from the specified starting 
point was f (x) = -3.995 by algorithm 16. Three other 
methods found solutions below f(x) = -3. These were 
method 32 with f(x) = -3.43, method 35 with f(x) = -3.257 
and method 34 with f(x) = -3.100. So both exterior and 
interior penalty functions algorithms using gradient 
and nongradient searching techniques performed well on 
this problem. Algorithms 9, 10, 19, 20, 21, 22, 26, 27, 28, 
29, 31 and 33 all found solutions with a final value of the 
objective function less than -2.0 which would all be con­
sidered to have partially solved the problem in the Eason 
and Fenton study. The other methods demonstrating any
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significant amount of progress were algorithms 11 and 13 
both of which generated final values in the objective func­
tion between -1.7 and -1.8. The remaining algorithms 
demonstrated little or no progress.

3.5.2 Problem Number Thirteen 
Problem number thirteen was also used in the study 

conducted by Eason and Fenton. It involves selecting gear 
ratios for an automobile to produce the minimum time to 
accelerate to 100 mph. The RPM-Torque curve was specified 
at fourteen points and in the original problem a torque 
value was interpolated from the data for each RPM value. 
This procedure was modified by fitting a series of cubic 
splines through the data so for each range of RPM data 
the torque was available in a closed form. This change 
was implemented because the interpolation proved to be 
very time consuming and produced no increase in accuracy. 
The objective function is discontinuous over the whole 
feasible region in finite steps of .0001 seconds. To 
obtain any gradient information the step increment for the 
calculation of numerical derivatives had to be on the

_3order of 10 . Apparently with this large increment the
derivatives calculated were not accurate enough to find the 
optimal solution. This is borne out by the fact that the 

• best solutions were produced by the nongradient methods. 
Even for the nongradient methods the solutions varied
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considerably with the best solution recorded by algorithm 
16 of f(x) = 26.79 seconds. Other good solutions were 
recorded by method 13 with a final f (x) = 27.22 seconds and 
by method 22 with a final f(x) = 27.24 seconds. All three 
of these methods employ a type of direct search procedure. 
The best solutions reported by the gradient based methods 
were centered around 27.50 seconds by algorithms 1, 10,
11, 12, 14, 15, 19, 20, 21 and 33. All other algorithms 
stopped above 27.70 seconds. The main point made by this 
problem is the need for an algorithm employing a non­
gradient technique for some discontinuous problems.

3.5.3 Problem Number Twenty-one 
Problem number twenty-one is a mathematical programming 

model of a three stage membrane separation process. The 
problem contains thirteen design variables, thirteen 
functional inequality constraints and upper and lower 
bounds on all of the variables. This problem proved to 
be very difficult because the feasible region is very small 
and many algorithms were simply unable to locate a feasible 
point. The solution is reported by Dembo as f(x*) = 
97.591034. This solution was located by algorithms 12 and 
31, while algorithm 13 produced a solution with f(x) = 
98.332. Several algorithms reached the vicinity of the 
optimal solution but did not terminate at a feasible 
point. These algorithms include methods 1, 19, 20, 21, 32,
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33, 34 and 35. Several other algorithms terminated at a 
feasible point with objective functions in the range of 102 
to 120. These algorithms were methods 9, 15, and 22. No 
other algorithms terminated at a point yielding an objective 
function value of less than 200, but it should be noted that 
methods 8, 10, 11 and 14 did produce feasible points. The 
remaining algorithms made no progress at all.

3.5.4 Problem Number Twenty-two
This problem is essentially an extension of problem 

twenty-one only now a five stage membrane separation process 
is being modeled. The problem contains sixteen variables, 
nineteen functional inequality constraints, and upper and 
lower bounds on all of the design variables. As with prob­
lem twenty-five many algorithms had difficulty locating a 
feasible point. The solution reported by Dembo has an opti­
mal value of the objective function of 174.788807. This so­
lution was found by algorithms 9, 15 and 31. Algorithms 14, 
16, 32, 33, 34 and 35 terminated in the approximate vicinity 
of the solution but were unable to locate a feasible point. 
Algorithms 13 and 22 terminated at feasible points with ob­
jective functions under 220. Algorithm 10 also terminated in 
this vicinity but at an infeasible point. While no other 
method found a feasible point producing an objective function 
of less than 600, both algorithms 11 and 12 located feasible 
points.

Both problem twenty-one and twenty-two are representa­
tive of a wide class of problems where just locating a
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feasible point is difficult. Most of the algorithms tested 
had great difficulty with these two problems but this could 
also be attributed in part to the poor relative scaling be­
tween the design variables which range in value from 10  ̂to 
10^. The only algorithm to solve both problems was algorithm 
31 an interior penalty function method. It should be noted 
also that the large majority of time spent by any interior- 
type method was in generating a feasible starting point.

3.5.5 Problem Number Twenty-eight 
This problem involves the design of a flywheel of arbi­

trary shape to generate the maximum kinetic energy for a spec­
ified volume and rotational speed. The inside radius of the 
flywheel was specified as well as the maximum radius and the 
maximum thickness the flywheel may obtain. The problem in­
volves five design variables including the flywheel thickness 
at the inner radius, the slope of the thickness function at 
the inside radius, two Raleigh-Ritz Fourier coefficients and 
the outside radius of the flywheel. Originally the problem 
contained seven Raleigh-Ritz Fourier coefficients and the ro­
tational speed was also included as a design variable but the 
problem had to be reduced to enable practical solution times. 
The problem contains three functional inequality constraints, 
one of which is a constraint on the maximum allowable stress 
at any radial location in the flywheel. The calculation of 
this constraint involves the solution of a boundary value 
problem for a second order differential equation. An itera­
tive solution was employed for the solution of this constraint
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which required approximately .75 seconds of computational 
time for each evaluation of the constraint. With an upper 
limit on the allowed computational time of 500 seconds this 
only allowed for slightly over 650 constraint evaluations.
Only two algorithms were able to produce the optimal solution 
in less than 150 seconds. Both algorithms 10 and 11 found 
the optimal solution of f (x) = -5.558. Three other algorithms 
terminated at feasible points with an objective function val­
ue less than -5.0. These algorithms were methods 12 and 15 
which generated final solutions with f(x) = -5.3, and method 
1 which terminated at f(x) = -5.1. Only four other algorithms 
were able to make any progress within the allowed 500 seconds. 
These were method 35 with a final objective function value of 
-4.66, method 20 with f(x) = -4.48, method 8 with f(x) =
-3.6 and method 29 with f(x) = -2.11.

This problem was included to represent the large number 
of engineering problems in which the evaluation of the objec­
tive function or constraints involves a time consuming itera­
tive analysis, and the fact that both of the algorithms solv­
ing the problem were generalized reduced gradient type 
methods should be noted.

3.5.6 Problem Number Twenty-nine
This problem involves maximizing the profit rate for the 

operation of a multi-spindle automatic lathe. The problem 
contains ten design variables, thirteen inequality constraints 
and one equality constraint. The overall performance of the 
algorithms in the study was very poor on this problem. Only
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two algorithms located the optimal solution of f(x*) =1615. 
These algorithms were methods 11 and 12, again both gener­
alized reduced gradient type methods. Two other algorithms, 
methods 16 and 13 made significant progress with final ob­
jective function values of -1542 and -1337 respectively. No 
other algorithms made any significant progress with the large 
majority terminating as soon as the equality constraint was 
located.

3.5.7 Problem Number Thirty 
This problem involves the design of a waste water treat­

ment plant to minimize the total construction cost. The 
problem contains nineteen design variables, one functional 
inequality constraint, eleven equality constraints, and up­
per and lower bounds on all of the variables. The presence 
of eleven nonlinear equality constraints presented an ex­
treme level of difficulty for most of the algorithms and no 
penalty type method was able to locate a feasible solution. 
Only algorithm 12 was able to generate the specified solution 
point of f(x*) = 24.3841. The only other algorithms which 
even located feasible points were methods 10 and 11, both of 
which terminated with objective value functions in the vicin­
ity of 43.6400. This solution point was a local minimum for 
the problem as both of the methods terminated when the re­
duced gradient went to zero. Both this problem and problem 
29 demonstrate the difficulty the penalty type methods have 
in the presence of nonlinear equality constraints.
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CHAPTER 4 DISCUSSION AND EXTENDED RESULTS

4.1 Introduction
The results from the last chapter indicate an apparent 

superiority for the linearization type methods over the 
penalty-type methods. In this chapter the performance of 
each general classification of algorithms will be con­
sidered with attention given to the algorithms which demon­
strated the best performance. Also several details will 
be considered about the manner in which the comparative 
study was conducted which could have possibly effected the 
comparative results. The items to be considered are the 
choice of system compilers and the possible effects from 
the variation of the input parameters. Also the portion 
of the total solution time spent in each computational 
phase will be considered for several algorithms. This 
will be done to determine where the algorithms which performed 
well in the study spend the majority of computational time.

4.2 Discussion of Results 
Within each major classification of algorithms, the 

linear approximation methods, the exterior penalty function 
methods and the interior penalty function methods the
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performance of the codes tested varied considerably. To 
indicate which programming features within each classifi­
cation proved to be effective on the test problem set 
the performance of each algorithm will be discussed. It is 
not the intention of the author to promote the use of any 
specific algorithm over another but to point out the type of 
algorithm which was most effective.

4.2.1 The Linear Approximation Methods 
This classification includes both the repetitive linear 

programming algorithms and the generalized reduced gradient 
algorithms. All of the linear approximation methods with 
the exception of algorithm 4 performed very well. Algorithm 
4, a repetitive linear programming method, was removed from 
further consideration after only solving six of the initial 
test problem set. This algorithm had difficulty with 
problems 4, 5, and 12, all of which had unconstrained 
solutions, and failed to satisfy the equality constraints 
on problems 6 and 15. Good progress was made on problems 
11, 14 and 16 but the method had difficulty in adequately 
satisfying all of the constraints active at the solution.
The other repetitive linear programming method, algorithm 9, 
fared much better. Again trouble was encountered on the 
essentially unconstrained problems 4 and 5 but a method 
relying on a linear programming routine would not be 
expected to do well on problems where the solution is not 
constrained.' With the additional programming to handle
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equality constraints using Newtons method, algorithm 9 did
not encounter much difficulty with the problems containing
equality constraints, with the exception of problem number
6 for which Newtons method diverged while trying to initially
satisfy the equality constraints. The other problems where
difficulty was encountered were problem 23 where trouble was
encountered in satisfying the inequality constraint, and
problem 25 where significant progress was made but much
time was consumed in locating the constraint which was tight
at the solution. This was probably due to the fact that a
significant distance had to be traveled in the feasible
domain before the constraint is encountered. It should
be noted that algorithm 9 was one of the few codes to solve
problem 27 which contained forty-eight design variables.
The performance of algorithm 9 on the problems it solved

-4was quite good. For a total error criteria of e = 10 ,
algorithm 9 solved over fifty percent of the problems in 
the study in less than 25% of the average solution time.
The general trend was either a relatively fast solution 
or none at all for only four additional problems were solved 
after the 25% rating. On the additional problems consider­
able progress was made on problems 9 and 21 and it was one 
of the three algorithms to find a solution to problem 22.
No progress was made on problem 13, another problem with an 
unconstrained solution, and on problems 28, 29, and 30. On 
problem 28 great difficulty was encountered in satisfying
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the maximum stress constraint which is highly nonlinear, on 
problem 29 the equality constraint was satisfied but no 
significant progress was made, and on problem 30 Newtons 
method again diverged while trying to locate a point with 
initial equality constraint feasibility. Overall performance 
then, was very good but the method encountered difficulty 
moving through unconstrained regions and when in the presence 
of highly nonlinear constraints. Handling the equality 
constraints using Newton's method proved to be quite 
effective with the exception of finding an initial feasible 
point. Perhaps the introduction of artificial variables for 
the equality constraints, as is done with several of the 
reduced gradient algorithms, would help with this problem.

The effectiveness of the reduced gradient algorithms 
was unmatched by any other type of algorithm. The four 
generalized reduced gradient algorithms included in the 
study all performed extremely well. These four algorithms 
held four of the top five rankings in the relative ratings 
for all levels of accuracy.

Algorithm 12, employing the Feltcher-Reeves conjugate 
gradient technique to generate search directions was the 
only method which was able to solve all twenty-three of the 
test problems included in the relative rankings. It 
should also be noted that all problems were solved within 
100% of the average time indicating that algorithm 12 is 
not only very robust, but also very fast. For the additional
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test problems no progress was made on problem 9 but progress 
was made on problem 13, problems 21, 29 and 30 were solved, 
significant progress was made on problem 28, and a feasible 
point was found for problem 22 although not much progress 
was made.

Algorithm 11, again employing the Fletcher-Reeves con­
jugate gradient technique to generate search directions, 
was also very effective. Out of the twenty-three rated 
test problems, algorithm 11 solved twenty-one. The two 
problems which were not solved were problem 12 where trouble 
was encountered in moving off of a variable bound and problem 
17 where significant progress was made but progress near the 
solution was very slow. While not solving as many problems 
as algorithm 12, algorithm 11 was slightly faster on most 
problems which can be seen by the relative rankings for 
25 and 75 percent of the average time ratings where algorithm 
11 holds down the top position. Performance on the addition­
al problems was again very good, with progress being made 
on problems 9 and 13, feasible points were found for 
problems 21, 22 and 30, and the solution was found for 
problems 28 and 29.

Algorithm 10 which employs the Broyden-Fletcher-Shanno 
variable metric technique to generate search directions 
solved all but four of the twenty-three rated test problems. 
The problems where difficulty was encountered were all from 
the Dembo study, problems 17, 18, 20 and 23, and in each case
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progress was made. For each of these problems the termina­
tion was caused by the step size going to zero. Again 
while the number of problems solved is less than for algor­
ithms 11 and 12, algorithm 10 was extremely fast as can be 
demonstrated by the high relative rankings at the 25% 
and 75% average time ratings. In fact, this algorithm 
produced the fastest time on the majority of the test 
problems. Performance on the additional test problems was 
also good. Significant progress was made on problems 9 and 
13, a solution to problem 28 was found, and a feasible point 
was located for problems 21 and 30. However, no significant 
progress was made on problem 29 and a feasible point could 
not be located for problem 22.

Algorithm 8 employs the Davidon-Fletcher-Powell variable 
metric technique to generate search directions. In all 
twenty of the twenty-three rated test problems were solved, 
but several problems required a significantly large amount 
of computational time and only eighteen problems were solved 
within 250% of the average time placing algorithm 8 directly 
behind algorithms 10, 11, and 12 for the majority of the 
relative rankings. The problems where difficulty was 
encountered were problem number 19 where significant 
progress was made before the step size went to zero, and 
problems 23 and 27 where a singular matrix was encountered. 
The general speed on the majority of the problems was good 
but from the relative rankings for the 25% and 75% average
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time ratings it is apparent that algorithm 8 was not quite 
fast as the other reduced gradient algorithms. The per­
formance on the additional problems was not quite up to par 
either with significant progress made only on problem 8, and 
feasible points located for problems 21 and 30.

The overall performance of the reduced gradient algor­
ithms could be rated nothing less than outstanding. The 
performance was good on both large and small scale problems, 
and the methods handled equality constrained problems and 
problems with highly nonlinear constraints with relative 
ease. Algorithms 11 and 12 ranked first or second in all 
of the relative ratings and algorithms 10 and 8 were never 
ranked lower than fifth. Also, the rankings for the reduced 
gradient algorithms were not effected by an increase in the 
level of required accuracy as were some of the penalty type 
methods, another outstanding feature of the generalized 
reduced gradient algorithms.

4.2.2 The Exterior Penalty Function Methods
In all there were twelve algorithms in this classifi­

cation, with the majority resulting from optimization pack­
ages where several different unconstrained search techniques 
were applied to the same penalty function. The performance 
of the exterior penalty function methods was quite varied, 
with several algorithms performing well while others 
performed quite poorly and could not be recommended for 
general use. The algorithms which performed poorly and were
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eliminated after the initial test problem set were methods 
17 and 18. The unconstrained search techniques used for 
these two methods were univariate search and steepest 
descent, both of which proved to be very time consuming. 
Algorithm 17 only solved six of the initial test problems, 
and for two of the six solved the solution time was well over 
three times the average time. The method had trouble satis­
fying the equality constrained problems and even had signifi­
cant difficulty on problems where several inequality con­
straints were tight at the solution. Also as the number 
of design variables increased the time consumed became ex­
tremely large. Algorithm 18 fared only slightly better 
solving seven of the fourteen initial test problems and 
only on problem 1 was the solution time over three 
times the average. However progress was still very slow 
especially on the larger problems and while progress was 
made on the majority of the problems in the initial test 
set, difficulty was encountered on equality constrained 
problems and in final constraint satisfaction for the tight 
inequality constraints. Of the ten algorithms which made it 
into the final ratings only six solved over half of the 
rated test problem set. The algorithms which solved 
less than half of the problems were methods 14, 16, 20 
and 22. Algorithm 14 which uses the conjugate gradient 
technique of Fletcher-Reeves for the unconstrained minimiza­
tions only solved nine of the twenty-three rated problems.
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No progress was made on problems 6, 14, 18 and 25, slight 
progress was made on problems 4 and 27, and significant 
progress was made on problems 8, 11, 16, 17, 19, 20, 23 
and 24. The major difficulty on these problems was the 
final constraint satisfaction was not adequate. For the 
additional test problems no progress was made on problems 
9, 28, 29 and 30, good progress was recorded on problems 
13 and 22, and a feasible point was found for problem 22. 
Algorithm 22 was also only able to solve nine of the rated 
test problems. Employing a Hooke-Jeeves pattern search 
for the unconstrained minimizations, algorithm 22 made no 
progress on problems 6, 12, 26 and 27, slight progress on 
problems 14 and 17 and significant progress was recorded 
on problems 1, 2, 3, 16, 17, 19, 20, 23 and 24. The major 
difficulties were generally slow progress and the inability 
to attain constraint satisfaction on both equality and 
tight inequality constraints. For the additional test 
problems, significant progress was recorded on problems 9 
and 13. Progress and termination at a feasible point were 
accomplished on problems 21 and 22, and no progress was made 
on problems 28, 29 and 30. Algorithm 16, which employed a 
combination of Hooke-Jeeves pattern search for the vari­
ables near their bounds and the Simplex method for the 
others as an unconstrained minimization technique, solved 
a total of eleven of the rated test problems. With the 
exception of problems 14 and 27, however, significant
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progress was made on every problem. Even good progress was 
made on the equality constrained problems 6 and 16 with the 
only problem being the final level of equality constraint 
satisfaction. The algorithm was generally very effective 
at locating the region of the optimal solution but diffi­
culty was encountered in moving in heavily constrained 
regions. On the additional test problems the best solutions 
to problems 9 and 13 were recorded by algorithm 16, and 
significant progress was made on problems 22 and 29. So 
while the total number of problems solved by algorithm 16 
was not very impressive, the ability to make significant 
progress on problems was. An algorithm such as method 16 
would be valuable to apply to the problems where the gradi­
ent methods encounter trouble. Algorithm 20, which also 
solved 11 of the rated test problems, employs the Fletcher- 
Reeves conjugate gradient technique for the unconstrained 
minimizations. Trouble was encountered on the equality 
constrained problems 6, 16 and 29, but good progress was 
made on all other problems with the exception of problem 
27 where only slight progress was made. On each of prob­
lems 7, 17, 18, 19, 20, 24, and 25 good progress was made 
until the actual vicinity of the optimal solution was 
reached. Again the major problem encountered was the in­
ability of the code to attain adequate constraint satis­
faction. On the additional test problems, significant 
progress was recorded on problems 9, 13, 21, 22 and 28.
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The overall speed of algorithm 20 on the problems solved 
was quite good with ten of the eleven problems solved within 
75% of the average time.

The remaining six algorithms employing an exterior 
penalty function approach solved at least half of the rated 
test problem set. Algorithm 19, employing the conjugate di­
rection method of Powell, solved thirteen of the rated test 
problems. The basic problem with this algorithm was that 
for most cases it was very slow. Of the thirteen problems 
solved ten required a longer than average time for solution. 
For the problems not solved, significant progress was made 
on problems 14, 16, 17, 19, 20, 24 and 25 but convergence 
toward the optimal solutions was extremely slow, especially 
for the problems which had over five design variables. In 
addition no progress was recorded on problem 27, and prema­
ture termination occurred on problems 6 and 26 as the equal­
ity constraints were satisfied. On the additional test 
problems progress was made on problems 9, 13 and 21. 
Algorithm 13 solved a total of fifteen of the rated test 
problem set. The pattern search method of Hooke and Jeeves 
is used to solve the successive unconstrained stages. As 
far as the number of problems solved, algorithm 13 ranked 
higher than any other nongradient technique. The compu­
tational speed was also good with eleven of the fifteen 
problems being solved within the average solution time.
The only problem where no progress was recorded was problem
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27 which contained forty-eight design variables. For the 
other problems where the optimal solution was not reached, 
some progress was made on problem 14, significant progress 
was made on problems 17, 19, 23 and 24, and a local minimum 
was found for problem 4. Progress was also recorded on 
several of the additional test problems. Good progress 
was made on problems 9 and 13, a feasible, near optimal 
solution was recorded on problems 21 and 22 and significant 
progress was made on problem 29. The performance of this 
algorithm was exceptional for a nongradient method and 
movement was even recorded on all of the equality constrained 
problems, with the exception of problem 30, which can not be 
said of most of the other penalty function algorithms. All 
four of the remaining algorithms employ a variable metric 
technique for the unconstrained minimizations. Applying the 
Davidon-Fletcher-Powell technique for the unconstrained 
optimization stages, algorithm 15 solved a total of fifteen 
of the rated test problems, ten of which were solved with-

-4in 75% of the average time at an accuracy level of ê. = 10 
The major troubles encountered with algorithm 15 were in 
the satisfaction of the equality constraints for problems 
6, 15, and 27, and in the satisfaction of the tight 
inequality constraints for problems 17 and 20. Also, no 
progress was made on problems 14 and 16 and only slight 
progress was made on problem 25. Performance on the 
additional test problems was also fairly good with the
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solution found for problem 22, and good progress was made 
on problems 13, 21 and 28. Algorithm 21, which also ap­
plies the Davidon-Fletcher-Powell technique for the uncon­
strained stages, solved sixteen of the rated test problems,
fourteen of which were solved within 75% of the average

-4time for an accuracy level of = 10 . Troubles
encountered again involved constraint satisfaction, with 
the equality constraints on problems 6, 26, and 27, and 
with the tight inequality constraints on problems 14, 17,
18 and 23. On the additional problems significant progress 
was made only on problems 9, 13 and 21. Algorithm 1, again 
employing the Davidon-Fletcher-Powell technique for the 
unconstrained minimizations, solved twenty of the twenty- 
three rated problems. The time required for solution was 
generally longer than required for algorithms 15 and 21 but 
the fact that significantly more problems were solved
resulted in a higher relative ranking for the ratings
above the 75% average time ratings. Seventeen of the twenty 
problems were solved within 100% of the average time and
nineteen were solved within 150% of the average time. Two
of the three problems where trouble was encountered 
involved the satisfaction of the equality constraints.
These were problems 6 and 26. On problem 23 good progress 
was made but the final solution was not reached. For the 
additional test problems significant progress was reported 
on problems 13, 21, and 28. The biased penalty function
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used in algorithm 1, which has the effect of reducing the 
distortion of the penalty surface at successive stages, 
appeared to enable the algorithm to satisfy the inequality 
constraints which are tight at the solution to a better 
extent than the other exterior penalty function methods.
This resulted in ratings close to those of the reduced 
gradient algorithms at the higher average time ratings.
The last of the exterior penalty function methods, algorithm 
35 employ 3 the Broyden-Fletcher-Shanno technique for the 
unconstrained penalty stages. The algorithm solved every 
problem of the rated test set with the exception of problem 
27 where good progress was made. The reason the algorithm 
did not fare well in the ratings was in the length of time 
required to reach the solution. Only seven of the problems 
were solved within 100% of the average time and only fifteen 
problems were solved within 250% of the average time. 
Performance on the additional test problems was fair to 
good with significant progress being made on problems 21,
22 and 28. If the rate of convergence could be improved for 
this algorithm its relative rating would improve considerably 
for it solved more problems than all but one algorithm on 
the rated test set.

The overall performance of the exterior penalty func­
tion methods was widely varied but the algorithms which 
employed a variable metric method for the successive un­
constrained stages generally performed well. The basic
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problem encountered was the ability to achieve constraint 
satisfaction on problems which had several constraints active 
at the solution. Difficulty in moving on problems contain­
ing nonlinear equality constraints was also a problem common 
to most of the algorithms. In comparison to the generalized 
reduced gradient algorithms, the exterior penalty function 
methods were generally slower on most problems, but several 
of the algorithms, methods 1, 15 and 21 ranked directly 
behind the reduced gradient algorithms in most of the 
ratings. As the allowable level of total error was de­
creased the gap between the exterior penalty function 
algorithms and the reduced gradient algorithms widened with 
the inability to achieve the required level of constraint 
satisfaction for the penalty function algorithms being the 
major contributing factor.

4.2.3 The Interior Penalty Function Methods 
Seventeen algorithms tested in the comparative study 

were contained in this general classification. Algorithms 
32, 33 and 34 were actually mixed penalty functions using 
an interior penalty form for all inequality constraints 
satisfied at the starting point and an exterior form for 
the initially violated constraints, but were included in 
this classification. Of the seventeen algorithms, eight
were removed from final consideration due to poor per-

\

formance on the initial test problem set. These algorithms
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were methods 2, 5, 6, 7, 23, 24, 25 and 30. The specific per­
formance of each of these algorithms will not be discussed 
but it should be noted that all of these algorithms suffered 
from slow convergence characteristics, the inability to 
approach the tight inequality constraints to attain the re­
quired level of accuracy in the objective function and 
trouble in solving the equality constrained problems. Of the 
remaining nine algorithms, four failed to solve half of the 
rated test problem set. These algorithms include methods 3, 
26, 28 and 29.

Algorithm 3 employed a Hooke-Jeeves pattern search tech­
nique to solve the successive unconstrained stages and was 
only able to solve eleven of the rated problem set. No pro­
gress was recorded on problems 6, 15, 23, 26 and 27, a local 
minimum was found for problem 4 and significant progress was 
made on problems 1, 12, 14, 17, 20 and 24. For the problems 
where significant progress was made the difficulty was again 
the inability to attain a high level of constraint satisfac­
tion. No significant progress was recorded on any of the 
additional test problems.

Algorithm 26 employs Fletcher-Reeves conjugate gradient 
technique to handle the unconstrained minimizations. In all 
eleven of the rated test problems were solved. No progress 
was recorded on problem 23 due to the inability to find a 
feasible starting point but good progress was made on problems 
5, 6, 14, 15, 17, 18, 19, 24, 25, 26 and 27. Trouble was encoun­
tered in satisfying the equality constraints and in attaining
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sufficient inequality constraint satisfaction. On the addi­
tional test problems significant progress was recorded only 
for problem 9.

Algorithms 28 and 29 were both second order methods and 
although progress was made on most of the problems the 
methods were both very slow and tended to terminate premature­
ly r probably due to the fact that numerically calculated 
gradients were not accurate enough for the second order 
methods. Another second order method, algorithm 34 solved 
thirteen of the twenty-three rated test problems but suffered 
from the same basic problems as algorithms 28 and 29. For 
this reason methods requiring second derivatives could not 
be recommended for general usage unless analytical deriva­
tives are available.

The remaining four algorithms performed significantly 
better, solving at least seventeen of the rated problems. 
Algorithm 27, solving seventeen of the rated problem set, em­
ploys the Davidon-Fletcher-Powell variable metric technique 
to handle the unconstrained stages. No progress was made on 
problem 8, due to the fact that a feasible starting point 
could not be located, but significant progress was made on 
problems 5, 6,7, 19 and 26. On three of these problems the 
difficulty was in satisfying the equality constraints to the 
required level. The fact that algorithm 27 was able to solve 
problem 27 should be noted for this was the only interior pen­
alty method to attain the solution to this forty-eight 
variable problem. The relative speed of the method was
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also quite good. Fourteen of the seventeen problems solved 
were solved within 100% of the average time for the total

_4error rating of 10 . This ranked algorithm 27 in the same
group as several of the better exterior penalty functions in 
most of the ratings. Performance on the additional test 
problems was not very good, however, with significant pro­
gress only reported on problem 9.

Algorithm 31 also employed a variable metric technique 
to handle the successive unconstrained stages and was able to 
solve seventeen of the rated test problems. However, only 
five of these problems were solved within 100% of the aver­
age time and only thirteen within 250% of the average time. 
For this reason the algorithm was not ranked very high in any 
of the average time ratings. For the problems not solved, no 
progress was made on problem 27, a local minimum was found 
for problem 4 and slow but significant progress was recorded 
on problems 6, 12, 17 and 26. Performance on the additional 
test problems was better than for any other interior penalty 
method with a solution recorded for both problems 21 and 22 
and significant progress made on problem 9.

Algorithm 32 employs Powell's method of conjugate
directions for the unconstrained minimizations and was able
to solve eighteen of the rated problems. Progress was
again slow however, with only four problems being solved
within 100% of the average time. In the 250% rating fif-

-4teen problems were solved for = 10 , ranking the method
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with several of the better exterior penalty type methods.
No progress was recorded on problems 6 and 27, slight 
progress was made on problem 26 and significant progress 
was made on problems 15 and 20. Thus four of the five 
problems where the solution was not reached involved 
equality constraints. For the additional test problems 
excellent progress was made on problem 9, and significant 
progress was made on problems 21 and 22 due mainly to the 
fact that the initially unsatisfied inequality constraints 
were handled by the exterior penalty terra.

Algorithm 33 employed the Broyden-Fletcher-Shanno var­
iable metric technique for the unconstrained stages and was 
able to solve eighteen of the rated test problems. The pen­
alty function employed was the same as for algorithm 32 
and the relative performance ratings are quite similar with 
the exception being that algorithm 33 was generally faster 
and ranked fairly well for both the 150% and 250% average 
time ratings for = 10” .̂ The problems where difficulty 
was encountered were problem 6 where no progress was recorded 
and problems 11, 17, 20 and 27 where good progress was made. 
Progress on the additional test set was recorded on problems 
9, 13, 21 and 22.

As with the exterior penalty function algorithms the 
basic difficulty with the interior penalty methods was 
the inability to attain satisfactory constraint satisfaction. 
The problem is only different in the fact that the constraints
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are being approached from the feasible region and the diffi­
culty is not in violated constraints but in not attaining 
the required degree of accuracy in the objective function. 
Also, as with the exterior penalty function algorithms, 
most algorithms had great difficulty with equality con­
strained problems. An additional problem was encountered 
on several of the highly constrained problems in simply 
locating a feasible starting point. Timewise several 
of the algorithms approached the speed of the better 
exterior penalty methods but in general the interior penal­
ty methods were slower.

4.3 Factors Affecting the Results 
The results presented in the last chapter clearly 

indicate that the linearization type methods and in 
particular the generalized reduced gradient algorithms are 
significantly faster, and in most cases significantly more 
robust than the penalty function methods. To ensure that 
it was not the methodology of collecting the data which led 
to this conclusion several additional factors will be con­
sidered. The selection of the system compiler will be 
considered since it has recently been demonstrated that 
the optimization level of a compiler may significantly 
affect the relative speed of different algorithms [48],
Also the effects of the variation of the parameters on 
the total solution time will be considered. The input 
parameters were not varied in order to produce any time
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savings and were only adjusted when trouble was encountered 
during the solution procedure or when the final solution 
was not acceptable. This adjustment of the input parameters 
could have had some effect, however, on the reported solu­
tion times, and the sensitivity of the input parameters 
about the final values for several problems will be con­
sidered for a sampling of the algorithms. Finally the 
percentage of the total time spent within the various compu­
tational stages will be considered for both the linear approx­
imation and penalty function methods in an effort to deter­
mine why the linear approximation methods and in particular 
the generalized reduced gradient algorithms have faster 
convergence characteristics.

4.3.1 Compiler Selection 
Several different compilers are available at the Purdue 

University Computing Center. The FUN compiler which is a 
merger between the original fortran compiler for the 6000 
series machines written by CDC and an updated fortran 
compiler from CDC was selected because it uses extensive 
statement and code optimization. While requiring a large 
amount of compilation time, the compiled binary instructions 
will execute faster. The increased compilation time was not 
important since each algorithm tested in the study was com­
piled and stored in binary form and only the subroutines 
pertaining to the specific problem had to be compiled con­
tinually. To investigate relative time differences which
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could occur by using other compilers, four algorithms, a 
generalized reduced gradient algorithm, an interior penalty 
function method, an exterior penalty function method and a 
repetitive linear programming method were applied to four 
problems on two other compilers. The other compilers 
consisted of the PTN compiler which is an early version 
of CDC's latest fortran compiler which produces a reasonably 
efficient code and the MNF compiler which is a user oriented 
compiler for the 6000 series machines which was developed 
by a group of staff members at the University of Minnesota. 
The ratio of the time required for the exterior penalty 
method, the interior penalty method and the repetitive 
linear programming method to the time required for the re­
duced gradient algorithm for each of the compilers on 
the four test problems is presented in Table 4.1. From 
the table it is apparent that the ratios vary from compiler 
to compiler but the amount of variation is quite small.
No trend is evident that the FUN compiler favored the reduced 
gradient algorithms over the other methods, in fact in 
several cases the time ratios increase by over 25% while 
the time ratios never decrease by even 10% indicating that 
by using either the FTN or MNF compilers might have actually 
increased the relative performance of the reduced gradient 
algorithms.
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Table 4.1 Ratios of Solution Times for Algorithms 1,
9 and 27 to Algorithm 11 for Various Compilers.

Compiler 14
Problem 

15 18 24

FUN 5.36 7.68 7.79 3.72MNF 5.68 7.10 8.88 4.47FTN 5.13 7.69 8.46 3.68

Algorithm 1

Compiler 14 15
Problem

18 24

FUN 4.01 10.42 1.59 13.23
MNF 4.05 10.13 1.70 14.58
FTN 5.13 13.99 2.13 12.11

Algorithm 27

Compiler 14 15
Problem

18 24

FUN .717 1.32 .820 .654
MNF .810 1.42 .997 .700
FTN .793 1.39 1.04 .644

Algorithm 9
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4.3.2 Variation of Parameters 
To study the effects on the solution time due to 

variations in the input parameters about their final values, 
four test problems were selected from the study. On each of 
these problems the input parameters for algorithms 1, 9,
10, 11, 15, 21, 27 and 31 were varied about their final 
values. The final values are the values of the input 
parameters used for the accepted run for each problem.
The problems were selected for their wide range in the 
number of design variables and in the number and type of 
constraints. The selected problems include problem 14 
which contains fifteen design variables, five functional 
inequality constraints and fifteen variable bounds, problem 
15 which contains sixteen design variables, eight equality 
constraints and thirty-two variable bounds, problem 18 
which contains seven design variables, fourteen functional 
inequality constraints and fourteen variable bounds, and 
problem 24 which contains four design variables, five 
functional inequality constraints and three variable bounds. 
The algorithms were selected so as to include several of the 
better algorithms from each general classification. 
Algorithms 9, 10 and 11 are linearization methods with 
algorithm 9 representing the successive linear programming 
technique and algorithms 10 and 11 representing the general­
ized reduced gradient methods. Algorithms 1, 15 and 21 
represent the exterior penalty function methods and
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algorithms 27 and 31 represent the interior penalty function
methods. All time data was recorded at a total relative

-4error, ê ., of 10 , unless it is stated otherwise.
The input variables to algorithm 9 included the initial 

step size, the final step size and the increment with 
which to calculate the partial derivatives. The percentage 
change in the solution time from the run accepted for the 
final results is presented in Table 4.2 for algorithm 9 
on the four test problems. A dashed line for any of the 
parameters indicates that this is the value used in the 
final results. Of the parameters effecting the solution 
time the initial step size was found to be very sensitive, 
and small changes resulted in thirty to forty percent 
deviations in the solution time. However, the trend was 
extremely problem dependent with no common trend encountered. 
It should be realized that by increasing or decreasing the 
initial step size the path followed to the solution is 
altered which can drastically effect the solution time.
The minimum step size was included in Table 4.2 to demon­
strate how the total solution time was effected. The 
percentage change in the total solution time was used as a 
comparison since altering the minimum step size would not
change the time to reach the required accuracy level of 

-4= 10 . It is apparent from Table 4.2 that as the minimum
step size decreases the total solution time increases 
significantly, pointing out the fact that for general usage
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Table 4.2 Percentage Change in Solution Time for Algorithm
9 for Variations in the Input Parameters.

Problem .50
Initial

1.25
Step
2.50

Size
5.00 10.0

14 +15.4 - 3.77 _ -31.5 -11.015 -16.3 -26.6 --- -22.9 + 7.7018 - 2.92 + 6.40 +18.42 +42.3 —
24 +30.4 +23.4 +22.3 + 7.34

Minimum Step Size
Problem .001 .005 .01 .05 ■10

14 +686 +129 +50.5 — No soln
15 + 45.4 + 8.4 — No soln No soln
18 +534 — No soln No soln NO soln
24 +218 - 1.06 -1.02 No soln

Problem 10"5
Linearization Increment-4 -7 -2 10 4 10 J 10 I-* o : 
i H

14 -6.81 -7.25 — + .49 + .84
15 - .42 - .06 - - .42 - .71
18 + .86 + .27 - + .63 +2.40
24 - .80 -2.60 -1.86 No soln



www.manaraa.com

the minimum step size should be chosen with care and not 
specified as an extremely small value. The final input 
parameter for algorithm 9 was the size of the linearization 
increment and was not found to cause any significant change 
in the solution time. The general conclusion then is that 
the times recorded for the test study could be altered by 
30% to 40% by variation of the input parameters, and the 
variation could either increase or decrease the reported 
solution times.

Table 4.3 presents the percentage change in the solu­
tion time for the reduced gradient algorithm 10 for changes 
in the variable bound satisfaction criteria, the constraint 
satisfaction criteria and the basis pivot criteria. All 
other programming parameters were handled internally to the 
algorithm. Results for problem 18 are not included in 
Table 4.3 since no solution was recorded for this algorithm. 
The general trend, as should be expected, is that as a higher 
degree of bound or constraint satisfaction is desired a 
resulting increase in the solution time is noted. The 
ability to select the level of constraint satisfaction was 
unique to the reduced gradient algorithms and made parameter 
adjustment almost unnecessary. The other parameter, the 
basis pivot criteria, determines the minimum value of a
pivot element in the generation of the basis inverse. The

-3suggested value of 10 was used throughout the study and
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Table 4.3 Percentage Change in Solution Time for Algorithm
10 for Variations in the Input Parameters.

Problem 10~7
Bound Satisfaction 

10~6 10“5
Criteria

10"4 10”3
14 No soln +10.6 -20.2 -16.315 - .36 - .20 -- - .27 - .5924 +25.4 -11.2 -30.3 No soln

Problem 10-7
Constraint

10-6
Satisfaction Criteria

10~5 io"4 10~3
14 No soln No soln -- -6.11 -14.5
15 + .10 - .64 - - .10 + 1.93
24 -1.12 -1.60 - - .22 - .43

Problem IO"6
Basic Pivot Criteria 
10"4 10~3 10"2 io"1

14 + .84 + .72 +1.03 + .55
15 + .39 + .32 - .21 + .43
24 - .45 +1.80 +2.69 +15.34
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from Table 4.3 it can be seen that this parameter had little 
effect on the solution time. The other reduced gradient al­
gorithm tested for input parameter variations was algorithm 
11. For this algorithm the input parameters involved the 
line search criteria, the constraint satisfaction criteria 
and the forward difference increment for the calculation of 
numerical derivatives. The results for variations in these 
parameters are presented in Table 4.4. The line search 
criteria was found to effect the solution time to some extent
but not by more than ten to fifteen percent over the range

-4tested. A value of 10 was successful on the large majority 
of problems but occasionally the line search criteria was 
decreased to achieve a higher level of accuracy in the solu­
tion. This was the case for problem 14. The constraint 
satisfaction criteria followed the same trend as for algorithm 
10 requiring a greater amount of time for an increased 
level of constraint satisfaction. The final input parameter, 
the forward difference increment was found to produce only 
insignificant differences in the solution times for all 
reasonable values. Variation of the input parameters 
for the reduced gradient algorithms point out an increase 
in the amount of control the user has for a problem and 
seldom was more than one run required for each problem 
on these algorithms.

No standard set of input parameters was found to work 
well for the exterior penalty function methods. For
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Table 4.4 Percentage Change in Solution Time for Algorithm
11 for Variations in the Input Parameters.

Problem IO-3
Line Search Criteria 
10“4 10“5 IO-6

r-ioH

14 +14.6 -10.2 -6.8 — -1.32
15 +12.6 — -9.6 +14.3 +4.9
18 + 1.10 — + . 20 - .50 +2.6824 - .17 -2.1 + .70 +1.04

Problem
Constraint

io-3 io"4
Satisfaction

10“5
Criteria
IO-6 10-7

14 No soln No soln -2.30 — +11.8
15 -18.9 -20.6 -1.4 — - 1.2
18 No soln No soln -4.8 — + 4.6
24 No soln -20.6 -7.3 -- +29.0

Problem 10~3
Forward

10~4
Difference

10“5
Increment

io-6 io"7
14 -2.9 +1.1 -1.3 — -3.1
15 +1.1 + .70 + .90 — + .04
18 No soln 0.0 - .25 — +9.9
24 -2.3 -2.3 -1.2 - .86
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algotihm 1 the required input parameters included the line 
search criteria, the initial penalty parameter, and the for­
ward difference increment. No penalty multiplication fac­
tor for each stage was required because algorithm 1 employed 
a biased penalty function which maintains a constant value 
for the penalty parameter. The percentage change in the 
solution time for variations in these parameters is presented 
in Table 4.5. The method can be seen to be quite sensitive 
to the line search criteria with wide variations possible 
in the solution time. The penalty parameter determined to a 
large extent whether a solution was found to the required 
level of accuracy. This was due to the fact that to satisfy 
the inequality constraints to the required level the penalty 
parameter had to be increased and for several problems 
the line search criteria had to be decreased to provide for 
a more accurate solution. Generally this did not seriously 
effect the solution time recorded but as can be seen from 
Table 4.5 some large variations were possible for problem 
15. Problem 18 was not included in the parameter study 
since the penalty parameter had to be raised to an extremely 
large value to achieve any solution and with such a large 
penalty parameter the algorithm acted more as an interior 
method than an exterior method. The forward difference 
increment for this algorithm had to be maintained at a 
relatively small value to insure a solution. Algorithm 15 
was unique in the sense that all parameters were set
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Table 4.5 Percentage Change in Solution Time for Algorithm
1 for Variations in the Input Parameters.

Problem i<r3
Line Search Criteria 
10"4 10”5 10”6 io"7

14 No soln -22.9 +109 + 7.8015 -43.4 -28.4 + 5.70 - +12.6024 No soln + 1.29 •— +11.2 +20.3

Problem 25
Penalty

50
Parameter

100 200
14 -3.04 — No soln +13.1
15 No soln +105 — - 9.30
24 No soln + 7.3 - 2.58

Problem 10 3
Forward Difference

-4 -5 10 H 10 3
Increment

IO-6 H O 1 ~0
14 No soln No soln No soln +27.3
15 -19.1 -6.80 -9.70 - 5.60 —
24 No soln -2.10 -1.72 - 6.00
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internally, and for the initial run the user did not have 
to select any values. The initial penalty parameter is 
calculated so that at the first stage the penalty function 
is appreciably more sensitive to the objective function 
than the constraints. The internally selected parameters 
worked very well for the problems in the test set and rarely 
did any parameter have to be changed. To determine how 
sensitive the penalty function parameter, the penalty 
multiplication at each stage and the forward difference 
increment were to variations in the parameters from the 
values selected internally a parameter study was conducted. 
The results appear in Table 4.6. Potential time savings 
from decreasing the number of stages required by increasing 
the initial penalty coefficient or the penalty multiplication 
at each stage were canceled out by an increase in the time 
required per stage. In no case did the solution time 
fluctuate by more than twenty percent, so the internal 
selection of parameters proved to be quite sufficient.
The success of the selection of internal parametesr is 
probably due to the fact that the constraints are scaled 
at the beginning of each stage to reduce the domination of 
the penalty function by any one constraint and allow for a 
uniform set of program parameters to be selected. The same 
three parameters, the initial penalty coefficient, the 
penalty multiplication factor at each stage and the forward 
difference increment were required for algorithm 21. The
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Table 4.6 Percentage Change in Solution Time for Algorithm
15 for Variations in the input Parameters.

Problem
Penalty Function Parameter (FP)

%/FP %/FP %/FP %/FP
15 — /io"4 -4.67/10 -3.70/10 +8.88/10-118 --- /*15C +7.27/1.0 +-14.7/10.0 +18.7/20.024 ---/10"6 -8.40/10-5 -6.72/10-3 -6.70/10’1

Problem
Penalty Multiplication at Each Stage 

8 15 30 45
15 --- -17.8 No soln No soln
18 --  - .82 -8.36 -18.9
24 --  - 5.90 -1.03 - 2.24

Forward Difference Increment
Problem 10~10 10"7 10“5

15 — — + .44 + 2.36
18 -- + .07 +12.10
24 +6.19 No soln
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percentage change in the solution time for variation in these 
parameters is presented in Table 4.7. Again no variations of 
over 25 percent were noted for changes in the initial 
penalty coefficient or the penalty multiplication factor, 
but as for algorithm 1, both parameters had a significant 
effect on whether the solution was located to the sufficient 
degree of accuracy. This again was due to the fact that a 
combination of the initial penalty coefficient and the 
multiplication factor had to be determined which would 
achieve constraint satisfaction to the required level of 
accuracy. This adjustment procedure usually involved several 
trial runs. The forward difference increment was again 
required to be fairly small, another common factor for the 
exterior penalty function methods.

For the interior penalty function methods the suggested 
input parameters had significantly more success than for the 
exterior penalty function methods. This was due to the 
fact that the inequality constraints were approached from 
the feasible region and no parameter adjustment was 
required because of slightly violated inequality con­
straints at the solution. Algorithm 27 was the interior 
counterpart to algorithm 21. The same input parameters 
were required with the exception that a the penalty co­
efficient multiplication factor is required to be less than 
one which actually produces a penalty coefficient reduction 
factor. The percentage change in the solution time for
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Table 4.7 Percentage Change in Solution Time for Algorithm
21 for Variations in the Input Parameters.

Problem .01
Penalty Function Parameter 
.50 1.0 10.0 50.0 100.0

14 No soln No soln -10.5 - 1.56 -20.315 +5.27 — - 9.50 - 7.32 No soln No soln
24 No soln No soln —  +28.9 +19.1 +21.4

Penalty Multiplication at Each Stage
Problem 10 20 50 100 200

14 +1.80 No soln + 7.45 - -11.0
15 No soln No soln +24.4 -- No soln
24 No soln No soln No soln -13.3

Problem
Forward Difference Increment 

10"4 io"6 10“8 10~10
14 No soln -29.4 -9.10 —

15 No soln No soln No soln ---
24 No soln No soln +7.10 '
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variations in the input parameters is presented in Table 
4.8. Variations of thirty to forty percent are possible 
by adjusting the initial penalty coefficient or the 
multiplication factor but these large variations represent 
an increase in the solution time not a decrease. Only 
time savings of up to fifteen percent were noted by 
parameter variations which would indicate that the standard 
input parameters are quite good for this algorithm at least 
on these test problems. The forward difference increment

_7was again required to be on the order of 10 to allow 
for an efficient solution. For algorithm 31 the same three 
parameters were required as for algorithm 27 plus an addi­
tional parameter regarding the subproblem convergence 
criteria. The effect on the solution time resulting from 
variations in these parameters is presented in Table 4.9. 
The results are much the same as for algorithm 27 with 
large increases in solution times resulting for most com­
binations, although for problem 24 a possible forty percent 
reduction in solution time did result for a reduction in the 
initial penalty coefficient. The overall results from 
Table 4.9 indicate that the suggested parameters work 
well for this algorithm also. The subproblem convergence 
criteria was not found to significantly effect the solution
time and the forward difference increment was fairly in-

—4 -7sensitive over the range from 10 to 10
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Table 4. 8 Percentage Change in 
27 for Variations in

Solution Time for Algorithm 
the Input Parameters.

Problem
Penalty Function Parameter 

.005 .05 .50 5.00
14 - 4.70 + 6.80 _ +17.818 -11.7 -15.0 --- +30.024 - 4.40 - 7.50 +36.8

Problem .01
Penalty Multiplication Factor 

.05 .10 .25 .50
14 -14.9 - 6.70 + 3.15 +17.4
18 + 7.02 +10.30 --- - 3.40 +30.3
24 + .06 - 4.50 ' +24.2 +44.0

Forward Difference Increment
Problem lO"7 10’5 ID'3

14 --  +31.7 No soln
18 --  +29.0 No soln
24 --  +22.1 No soln
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Table 4.9 Percentage Change in Solution Time for Algorithm
31 for Variations in the Input Parameters.

Problem .01
Penalty Function Parameter 

.10 1.0 10.0
14 +484 +95.3 -15.5
18 + 22.7 + 1.94 --- +36.224 + 38.5 -40.2 -- No soln

Problem 8
Penalty Reduction Factor 

12 16 20 24
14 - 4.76 -2.86 —  - .30 +1.02
18 + 9.61 +6.50 —  +1.24 -6.35
24 +26.24 +5.02 —  -3.78 + .07

Problem
Subproblem Convergence Criteria 

10"7 10"6 10"5 io-4
14 + .08 -- + .41 - .53
18 + .08 --- + .12 0.0
24 + .04 --- - .02 + .50

Forward Difference Increment
Problem 10-7 10~6 10"5 ioi—i

14 +7.53 . -19.1 +1.64
18 -5. 34 --- - 4.40 +8.59
24 -4.73 + 7.84 +8.94
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The frequently significant changes in the solution 
times which were observed for variations in the input 
parameters demonstrate the importance these parameters have 
in the solution procedure. If the results were based 
on the best time for each algorithm for each problem time 
savings of from twenty to thirty percent could be expected 
from the times reported in the study. However, this type of 
time data would not be at all representative of what the 
average user might expect, and even if the best times were 
used for the relative ratings there is no evidence that the 
penalty function algorithms would even approach the level of 
performance demonstrated by the generalized reduced gradient 
algorithms. So the major result of the parameter study was 
to demonstrate that the generalized reduced gradient 
algorithms and the interior penalty function methods seem 
to perform well with the suggested input parameter values, 
while the exterior penalty methods generally require some 
manipulation of the initial penalty coefficient or the penalty 
multiplication factor at each stage in general usage.

4.3.3 Time Study for Computational Phases 
During the solution process for each algorithm several 

distinct computational stages are employed. If improvement 
of an algorithm is to be attempted, it would be most promis­
ing to concentrate on the computational stage from which 
the greatest savings in time could result. Also by comparing 
the time spent in the various computational stages for both
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the linearization and the penalty function algorithms an 
indication of where the linearization methods achieve their 
savings might result. To generate this type of information 
the basic computational phases were determined for the 
algorithms which performed well in the study and timing 
routines were inserted in these algorithms to find out 
what portion of the total solution time is spent in each 
phase. The algorithms were then run on the four problems 
which were used in the parameter study.

For algorithm 9, a repetitive linear programming method, 
the only major computational phases were the generation of 
the linear programming problems, the solution of the linear 
programming problems, and the adjustment of the variables 
by Newton's method which is relevant only for problems 
involving equality constraints. The total time required 
to solve each of the four test problems and the percentage 
of the total time spent in each computational phase for 
algorithm 9 is presented in Table 4.10. The results, as 
might be expected are highly problem dependent, but the 
interesting fact is that the percentage of the total time 
spent in generating the linear programming problems is 
greater than or equal to the time spent in solving the 
linear programming problems except for problem 24 which 
contained only four variables and five functional constraints. 
If the solution of the linear programming problems had 
required the large majority of the solution time the number
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Table 4.10 Percentage of Time Spent in Various Phases of the Solution Procedure
for Algorithm 9.

Problem
Phase 14

Percentage of Total Time 
15 18 24

Generating L.P. Problems 58.2 86.7 48.7 33.4

Solution of L.P. Problems 39.4 9.1 47.9 64.9

Newton's Method 0.0 2.5 0.0 0.0

Total Time (sec) 5.673 13.248 3.451 .400
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of constraints would probably be the important factor in the 
total time required for a repetitive linear programming 
algorithm since the number of constraints is the determin­
ing factor in how long a linear programming problem solution 
requires [49]. However, since the generation of the linear 
programming problems requires the calculation of the partial 
derivatives of the objective function and the constraints 
with respect to the design variables the product of the 
number of design variables and the constraints would 
become the deciding factor to the solution time required.

For a reduced gradient algorithm there are many major 
computational phases involved in the solution process.
These phases include the generation of the partial deriva­
tives, matrix inversion and basis changing, the calculation 
of the reduced gradient, the calculation of the search 
direction and the time spent in the line search. Of the 
time spent in the line search a certain portion is spent in 
Newton's method to maintain constraint satisfaction. Many 
of these phases could be considered as part of the total 
generation of the search direction but each phase was 
accounted for separately to provide for the best division 
of time. The total time required and the percentage of 
time spent in each of these computational phases for 
algorithms 10 amd 11 are presented in Table 4.11. The major 
portion of the time spent for both of the algorithms is in 
the generation of the partial derivatives, the matrix
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Table 4.11 Percentage of Time Spent in Various Phases of the Solution Procedure
for Algorithms 10 and 11.

Percentage of Total TimeProblem
Phase/Algorithm 14

10 11
15

10 11 10
18

11
24

10 11
Generating Constraint 
Partials 34.1 30.5 61.4 31.7 21.4 8.3 15.7 11.8
Matrix Inversion and 
Basis Changing 13.2 4.0 10.3 6.6 20.7 45.3 13.9 10.8

Calculation of 
Reduced Gradient 2.1 12.9 1.8 35.4 2.9 2.7 2.4 3.0

Calculation of 
Search Direction 4.4 1.6 2.6 1.4 4.5 1.4 3.1 1.4

Line Search 46.1 42.7 23.9 18.9 50.5 29.6 64.4 71.3

Percentage of 
Line Search Time 
Spent in Newtons 
Method

81.4 79.3 71.0 30.8 50.6 83.1 75.3 80.5

Total Time (sec) 4.471 8.101 4.997 8.943 .319* 3.616 .445 .575
*Very little progress
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inversion and basis changing and in the line search. Algo­
rithm 11 also spent a significant portion of time in the cal­
culation of the reduced gradient for problems 14 and 15. An 
interesting point to note is that the majority of the time 
spent in the line search was actually used in the satisfac­
tion of the constraints by Newton's method. Again the per­
centage of time spent in each phase of the algorithm was 
highly problem dependent and also varied between the two re­
duced gradient algorithms. This points out the fact that the 
computational procedures employed to execute each phase can 
effect the relative solution times of two algorithms which 
are theoretically almost identical.

For both the interior and exterior penalty function al­
gorithms the solution procedure may be divided into two gen­
eral phases. These phases are the generation of the search 
direction and the line search. Other phases such as the up­
dating of the penalty parameters or for several algorithms 
the extrapolation of successive solutions were present but 
the time spent in these phases did not account for any sig­
nificant percentage of the total solution time. Table 4.12 
presents the total time and the percentage of time spent in 
these computational phases for the exterior penalty function 
methods 1, 15 and 21, and Table 4.13 presents the same in­
formation for the interior penalty function methods 27 and 
31. A basic trend for both the interior and exterior penalty 
function algorithms is that as the number of variables in­
creased the time spent in generating the search directions
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Table 4.12 Percentage of Time Spent in Various Phases of the Solution Procedure for Algorithms 1,
15 and 21.

percentage or Total 'lime'
Problem

Phase/Algorithm 1
14
15 21 1

15
15 22 1

18
15 22 1

24
15 22

Calculation
of Search 
Direction

67.7 87.0 52.9 75.0 79.4 73.8 37.9 71.0 42.3 33.8 54.0 33.5

Line Search 29.6 11.1 46.8 24.2 20.4 22.1 49.3 28.8 56.1 60.2 42.6 63.7
Tbtal Time 
(sec) 40.08 .270* 31.88 62.59 137.7 62.26 32.0 10.99 7.05+ 2.33 3.218 1.263

*No progress
^Significant progress
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Table 4.13 Percentage of Time Spent in Various Phases of the Solution Procedure for 
Algorithms 27 and 31.

Problem
Phase/Algorithm

Percentage of Total Time
14

27 31
15

27 31
18

27 31
24

27 31
Calculation 
of Search 
Direction

50.9 54.6 65.2 67.0 43.1 36.5 10.2 27.9

Line Search 47.5 43.9 34.1 31.4 55.9 61.5 87.2 67.5
Total Time 
(sec) 29.85 47.73 93.57+ 200.2 5.95 19.41 9.320 11.731

"•"Significant progress
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became the major element of the total solution time. The 
calculation of the search direction is largely composed of 
the time to generate the partial derivatives of the penalty 
function with respect to the design variables so no major 
time savings could be expected for this phase in future 
algorithm development. Time savings for the penalty func­
tion algorithms would have to be achieved by reducing the 
time spent in the line search, and the time savings would 
have to be extremely large to have any significant effect on 
the total solution time. The relatively small solution times 
for the reduced gradient algorithms as compared to the pen­
alty function algorithms must then be related to the rate of 
overall convergence rather than to a significant time dif­
ference in any computation phase of the algorithms. There is 
apparently a significant time savings inherent in handling 
the constraints directly. If all the phases but the time 
spent in the line search are grouped to form the time to gen­
erate the search direction for the reduced gradient algorithms, 
which is not precisely the case since the inverse of the 
basis i3 also used in the line search in Newton's method, the 
percentage of the total time spent in each phase is not that 
different from the penalty function algorithms. The major 
difference is that for the reduced gradient only a small por­
tion of the line search time is spent in the actual line 
searching since the majority of the line search time is con­
sumed by Newton's method. A comparison between the repeti­
tive linear programming algorithm and the penalty function
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algorithms is difficult, but the percentage of the total 
time spent generating the problem for the repetitive linear 
programming algorithm is roughly equivalent to the time 
spent in generating the search directions for the penalty 
function algorithms.
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CHAPTER 5 AN ALTERNATE APPROACH OP COMPARISON

5.1 Introduction 
The results of the comparative study so far have been 

based on the number of problems solved within a reasonable 
amount of computational time. The problems in the test 
set were intentionally selected to be widely varied in 
nature since the performance on the test set was to indi­
cate the performance one would expect in general usage. It 
would still be beneficial, however, to have additional 
information pertaining to the performance of some of the 
better algorithms on a specific type of problem. This type 
of information cannot be generated from the results on the 
selected test problems because very few of the test problems 
were closely enough related to make much of a performance 
judgement on a specific type of problem. To obtain this 
information, a different approach was taken. The performance 
of the algorithms was rated on the basis of how the solution 
time varied as a function of the type of problem considered.
A problem containing five variables and ten inequality 
constraints with a quadratic objective function and con­
straints was selected as the standard problem. This standard 
problem was then altered by changing one problem factor such 
as the number of variables, the number of inequality
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constraints, the number of equality constraints or the de­
gree of nonlinearity to form another problem class. The 
solution times reported for each problem class are the 
average time for each algorithm on a set of ten randomly 
generated problems within that problem class to an accuracy 
of et = 10“4.

5.2 Problem Generation 
It would be desirable to base the problems on some 

practical engineering applications, but to find ten prob­
lems with the same number of variables, constraints and 
general degree of nonlinearity is not at all an easy task.
If the additional restriction is imposed that the distance 
from the starting vector to the solution vector remains 
constant, the task of gathering the problems becomes even 
more difficult. For this reason the problems were selected 
to have a convenient mathematical form. The selection of 
a quadratic objective function and quadratic constraints 
for the standard problem has several distinct advantages. 
First of all, all of the algorithms tested were able to solve 
this type of problem with the recommended values for the 
input parameters so only one run per problem was required. 
Also the degree of nonlinearity can be raised simply by 
considering higher order terms such as cubic or quartic 
terms. In addition the quadratic functions may easily 
be selected so that the constrained region is a convex set.
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which would guarantee the presence of only one optimal 
solution.

The test problems were generated following the 
procedure of Rosen and Suzuki [50]• For example consider 
the standard test problems consisting of five variables 
and ten constraints. The quadratic form for the objective 
function may be expressed as

f(x) = x TQq x + ax (5.1)

and for each constraint as

g .  ( x ) =  x T Q . X  +  b . x  + c. ^ 0? i  = 1,2, . . . , 10 (5.2)
•L JL JL

For these expressions the Qq and are randomly generated 
N by N matrices, or five by five matrices for this case.
Qq is forced to be positive definite to guarantee unimodal­
ity and the are forced to be negative definite to guar­
antee a convex feasible region. The a, b^ and c^ are all 
column vectors containing N elements. Not only are the 
Q matrices selected but the b^ vectors, and the Lagrange 
multipliers are randomly generated, and the solution vector 
is also selected. The Lagrange multipliers are either set 
to zero if a constraint is not to be active at the solution 
or to a random number between .5 and 10. So that the 
problem is not unconstrained or overconstrained the number 
of constraints allowed to be active at the solution was 
also selected as a random integer between one and N-l.
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Now the and may be determined by the conditions re­
quired to make the selected optimal vector a Kuhn Tucker 
point. Thus a sequence of ten problems which have a common 
number of variables and constraints, a quadratic objective 
function and constraints, a common starting vector and 
solution vector, and a convex feasible set with a unimodal 
function may be easily generated.

The procedure to guarantee that Qq is positive defin­
ite and the were negative definite was not very compli­
cated either. The Q matrices were generated by submatrices 
with an additional row and column added to each submatrix 
to form the next. In this fashion a one by one matrix 
could be generated randomly to form a positive definite 
matrix. For a one by one matrix all that is required is 
that the element be positive. Next a randomly generated 
row and column are added and continually regenerated until 
the determinant of the two by two matrix is positive. By 
continuing the procedure a row and column at a time with 
positive elements in all diagonal locations a positive 
definite matrix can be built up gradually. In this fashion 
only one row and column need be regenerated for each 
submatrix which was far more efficient than regenerating 
an entire N by N matrix until a positive definite matrix 
resulted, an occurrence which may never occur with randomly 
generated coefficients. The procedure for generating 
negative definite matrices was built on the same princple.
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The procedure for the problem generation may be easily 
extended to generate variations of the standard problem.
An increase in the number of inequality constraints simply 
requires the generation of additional matrices, and an 
increase in the number of variables only increases the size 
of the matrices. The basic procedure for the addition of 
equality constraints remains unchanged with the exception 
that the lagrange multipliers for the equality constraints 
may be positive or negative. However the addition of 
nonlinear equality constraints introduces the possibility 
of local minima. This problem was handled by including 
only those problems generated where all of the algorithms 
reached the selected optimal vector. For the increase 
in nonlinearity additional higher order terms were added 
to the basic quadratic form. No change was required for 
the problem generation with the exception of the check 
for positive or negative definiteness. The matrix of 
second derivatives no longer consisted of constant ele­
ments and computationally there was no easy way of guar­
anteeing that the functions were postive or negative 
definite. To circumvent this problem, the Q matrices 
were generated as for the quadratic functions and the 
additional terms were then added without an additional 
check as to the positive or negative definiteness of 
the matrices. This introduced the possibility of pro­
ducing a nonconvex feasible region but as for the addition
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of equality constraints the problems where alternate 
optimal solutions were found were not included.

The starting vector for all problems was the origin 
and the solution for all of the five variable problems 
was - 2.0. As the number of variables increased, however, 
the solution was adjusted so that the distance from the 
origin to the solution vector was the same as for the five 
variable problem. The performance of the algorithms will 
now be considered for each variation of the standard 
problem.

5.3 Increase in Design Variables
An increase in the number of design variables was 

by far the most critical factor in increasing the solution 
time for all of the algorithms. The average solution times 
for the seven selected algorithms on the standard test prob­
lem set along with the average solution times for the 10 
and 15 variable problem sets are presented in Table 5.1.
Also included in Table 5.1 is the percentage increase 
in solution time over the standard problem set for the ten 
and fifteen variable problem sets. For the five, ten and 
fifteen variable problem sets the linear approximation 
methods were significantly faster than the penalty function 
methods, with the reduced gradient algorithms 10 and 11 
producing solution times on the order of one half to one 
third the time required by the penalty function algorithms. 
The solution times for the repetitive linear programming
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Table 5.1 Solution Time and Percentage Increase in Solu­
tion Time for an Increase in the Number of 
Design Variables.

Algorithm
Number of Variables

5
time 10

time/% increase
15

time/% increase
1 6.306 23.482/272.4 70.288/1014.6
9 4.153 16.356/293.8 42.865/932.1

10 2.171 10.217/307.6 23.307/973.6
11 3.491 15.025/330.4 26.318/653.9
15 9.081 42.248/365.2 132.320/1357.6
21 6.639 33.637/406.7 75.191/1032.6
31 9.050 32.650/260.8 128.086/1315.3
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algorithm, method 9, were slightly slower than those produced 
by the reduced gradient algorithms, especially on the problems 
involving fifteen design variables, but again produced con­
siderable time savings over the majority of the penalty func­
tion algorithms. These results are in direct agreement with 
the results previously generated from the comparative study.

An interesting point is that the percentage increase in 
time was not that different for the various classes of algo­
rithms. The increase in the number of design variables from 
five to ten produced a percentage increase of slightly under 
300% for algorithms, 9 and 31, and an increase of from 330 
to slightly over 400% for the other algorithms. The increase 
to fifteen design variables generally produced a percentage 
increase in solution time of approximately 1000% over the five 
variable problem set. The exception was algorithm 11 which 
only produced an increase of approximately 650%. This dras­
tic increase in the solution time for an increase in the num­
ber of variables indicates that all of the nonlinear program­
ming algorithms are extremely sensitive to the number of de­
sign variables and as the number of design variables is in­
creased the computational time saved by applying the reduced 
gradient algorithms over the penalty function algorithms be­
comes increasingly significant. This can be seen clearly if 
the results are extrapolated to higher values of N. For an 
increase to 100 design variables, the extrapolated time for 
the penalty function algorithms ranges from 3000 to 13,000 
seconds on the CDC 6500 while the generalized reduced
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gradient algorithms have extrapolated solution times of under 
1000 seconds.

5.4 Increase in Inequality Constraints 
Figure 5.2 presents the solution time and the percentage 

increase in solution time as the number of inequality con­
straints was raised from ten to fifteen to twenty. The num­
ber of constraints allowed to be active at the solution was 
held between one and four as for the standard problem to pre­
vent an overconstrained solution. The effect on the solution 
time for an increase in the number of inequality constraints 
was not as drastic as for an increase in the number of vari­
ables. Again the linear approximation algorithms only re­
quired one half to one third the amount of computational time 
the penalty function algorithms required for all cases. For 
the penalty function algorithms doubling the number of con­
straints produced an increase of approximately one hundred 
percent in the solution time, while the linear approximation 
algorithms were slightly less effected with the exception of 
algorithm 11 which demonstrated the largest percentage in­
crease in solution time out of all of the algorithms. Upon 
investigation it was found that algorithm 11 employed Newton's 
method to adjust all of the slack variables instead of just 
the slack variables for the tight constraints. This resulted 
in increasing the amount of computational effort needlessly 
as the number of constraints increased, due to the increased 
size of the matrix to be inverted. Another interesting point 
is that the method of repetitive linear programming was the
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Table 5.2 Solution Time and Percentage Increase in
Solution Time for an Increase in the Number 
of Inequality Constraints.

Algorithm
Number of Constraints

10time 15time/% increase 20time/% increase
1 6.306 8.938/41.7 11.304/79.3
9 4.153 4.750/14.4 6.602/59.0

10 2.171 3.475/60.1 3.737/72.1
11 3.491 6.716/92.4 8.404/140.7
15 9.081 13.523/48.9 17.258/90.0
21 6.639 12.270/84.8 15.616/135.2
31 9.050 11.417/26.2 17.773/96.4
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least sensitive algorithm to an increase in the number of 
inequality constraints. This again points out the fact 
that the solution time required for this algorithm is de­
pendent upon the number of variables to a greater extent 
than the number of constraints even though the solution 
time required for a linear programming problem is known to 
increase as a function of the number of constraints. This 
result agrees with the results from the timing study where 
it was demonstrated that the solution of the linear 
programming problems was not as time consuming as the 
generation of the linear programming problems.

5.5 Addition of Equality Constraints 
The equality constraints were introduced to the prob­

lems by removing one inequality constraint for each 
equality constraint added so that the total number of 
constraints remained constant. Also for each equality 
constraint added the maximum number of inequality constraints 
allowed to be active at the solution was reduced by one.
The solution times and the percentage increase in solution 
time for the addition of one and three equality constraints 
is presented in Table 5.3. The effect on the solution 
times were not that evident with the exception of algorithms 
9 and 31. Algorithm 9, the repetitive linear programming 
algorithm was able to handle the addition of a single 
equality constraint but failed to solve the problems 
involving three equality constraints due to difficulty with
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Table 5.3 Solution Time and Percentage Increase in
Solution Time for an Increase in the Number 
of Equality Constraints.

Algorithm
Number of Equality Constraints0

time time/% increase
3

time/% increase
1 6.306 6.892/9.3 7.278/15.4
9 4.153 5.382/29.6 *

10 2.171 2.976/37.1 2.749/26.6
11 3.491 6.234/78.6 3.405/-2.5
15 9.081 10.108/11.3 9.956/9.6
21 6.639 8.504/28.1 10.320/55.4
31 9.050 18.380/103.1 27.156/200.2

♦Could not locate a feasible starting point.
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Newton's method in finding a feasible starting point. 
Algorithm 31, an interior penalty function algorithm, 
demonstrated a significant increase in solution time for 
the addition of equality constraints with a 100% increase 
for the addition of one equality constraint and a 200% 
increase for three equality constraints.

The effect on the exterior penalty function algorithms 
was not as great as might be expected, but the difficulty 
noted on the test problems from the comparative study was 
not an increase in solution time, but a failure to satis­
fy the equality constraints to the required level. This 
difficulty was not noticed on the problems generated for 
this test.

Once again the reduced gradient algorithms produced 
the best solution times although the time savings for the 
addition of a single equality constraint were not that 
great for algorithm 11. The interesting point is that the 
increase to three equality constraints produced a decrease in 
solution time from the problems involving one equality 
constraint which demonstrates another advantage of the 
reduced gradient algorithms over the penalty function algor­
ithms. The increase in solution time for the reduced 
gradient algorithms on the equality constrained problems 
was due to the time spent in finding a feasible starting 
point for there is essentially no difference in the way an 
equality constraint is handled by these algorithms than a 
tight inequality constraint.



www.manaraa.com

142

5.6 Increase in Nonlinearity
The degree of nonlinearity is hard term to quantify. 

Comparing a problem consisting of polynomial terms to another 
involving trigonometric or exponential terms as to the de­
gree of nonlinearity is not an easy task. It is possible, 
however, to gain an understanding of the effects of in­
creasing nonlinearity by concentrating on a single problem 
form. The standard problem set involves problems constructed 
with the most nonlinear term being quadratic. By adding 
cubic and quartic terms to these problems, the degree of 
nonlinearity is increased, and it was in this manner that 
the problems were constructed.

The effects on the solution time for the addition of 
the cubic terms were not dramatic for any of the algorithms, 
as can be seen from Table 5.4 where the solution times and 
percentage increase over the standard problem solution time 
are presented. The only algorithm affected to any major 
extent by the addition of cubic terms was algorithm 
11 for which the solution time increased 64% over the stand­
ard problem. It should be noted, however, that the total 
solution time for algorithm 11, a reduced gradient algorithm, 
was still well below the times recorded by the penalty 
function algorithms. The addition of quartic terms again 
affected algorithm 11 but also the time for algorithm 9, 
the repetitive linear programming algorithm increased 
dramatically. This increase in time would be expected



www.manaraa.com

Table 5.4 Solution Time and Percentage Increase in 
Solution Time for an Increase in Problem 
Nonlinearity.

Algorithm Highest Nonlinear Term
QUADRATIC CUBIC

time time/% increase QUARTIC 
time/% increase

1 6.306 8.263/31.0 10.680/69.4
9 4.153 5.324/28.2 9.386/126.0

10 2.171 2.306/6.2 2.890/33.1
11 3.491 5.735/64.3 7.247/107.6
15 9.081 9.787/28.1 11.023/66.7
21 6.639 8.507/7.8 11.069/21.4
31 9.050 10.393/14.8 12.453/37.6
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for a method based on linear programming solutions, but 
the effect on algorithm 11 is more difficult to explain.
It is true that the reduced gradient algorithms are linear 
approximation methods, but the increase in nonlinearity did 
not effect algorithm 10, another reduced gradient algorithm 
to any significant extent. A possible explanation for the 
difference is the type of unconstrained search directions 
generated by the algorithms. All of the penalty function 
algorithms and also algorithm 10 employed a variable metric 
technique to generate the search directions and were not 
significantly effected by the increase in nonlinearity. 
Algorithm 11, on the other hand, employed the conjugate 
gradient technique of Fletcher-Reeves and this technique, 
while producing a smaller percentage increase in solution 
time for an increase in the number of design variables, did 
show a significant increase in solution time as the non- 
linearity of the problem increased.

5.7 Discussion 
The major point to note from the results presented in 

this chapter is that they are consistent with the previously 
presented results. The linear approximation methods and in 
particular the generalized reduced gradient algorithms 
are significantly faster than the penalty function algorithms. 
The time required by the reduced gradient algorithms was 
consistently one half to one-third the time required by the 
penalty function algorithms.
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As far as the problem factors are concerned, all of 
the algorithms demonstrated the largest increase in solu­
tion time as the number of variables was increased. In­
creasing the number of inequality constraints, the addition 
of equality constraints or increasing the level of non- 
linearity generally had a minor effect on the solution 
time required by the algorithms as compared to an increase 
in the number of design variables.
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CHAPTER 6 COMBINATION OF ALGORITHMS

6.1 Introduction
The ability to handle constraints directly has been 

demonstrated to be more efficient than the penalty function 
approach in all of the results presented in the previous 
chapters. This brings up the question of whether the penal­
ty function algorithms can be modified to produce the same 
computational time savings. The penalty function algorithms 
had difficulty in obtaining constraint satisfaction on prob­
lems where several constraints were active at the solution. 
To solve this type of problem the input parameters had to be 
selected carefully so that each stage was solved accurately 
and so the penalty function contours at successive stages 
were not altered so drastically that progress to the optimal 
solution was impossible at the final stages. This is a very 
time consuming process, but if the problem is considered 
from another approach several improvements can be made. 
Consider a method consisting of two distinct phases. The 
first phase is to locate the vicinity of the solution 
and to identify the active constraint set. The second 
phase is to satisfy any violated constraints and to locate 
the optimum to the desired accuracy. The exterior penalty
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function algorithms are a natural choice for the first 
phase. The convergence criteria for each unconstrained 
stage may be very loose and the increase in the penalty 
parameter could also be fairly large. This would result 
in the location of the vicinity of the minimum in a few 
stages each of which requiring a small amount of time due 
to the large value of the convergence criteria at each 
stage. The active constraint set would be easy to obtain 
since after several "loose" penalty stages the active 
constraints will generally be slightly to moderately 
violated for an exterior penalty algorithm. The second 
phase would then involve locating the feasible optimal 
point. The logic of this phase could be very similar to 
that of a reduced gradient algorithm only now the selection 
of the decision and state variables may be made with a good 
idea of the active constraint set. Another approach would 
be to initiate a repetitive linear programming algorithm 
at this point since this type of algorithm has demonstrated 
extremely good performance once the constrained region has 
been located. Both of these approaches will be considered 
by combinations of existing algorithms. The biased penalty 
function algorithm, method 1, will first be coupled with a 
reduced gradient algorithm, method 11, and then with a 
repetitive linear programming algorithm, method 9. The 
improvement over the normal penalty function approach as 
well as the relative ranking with the algorithms tested 
in the comparative study will be considered.



www.manaraa.com

6.2 Combination of Biased Penalty and Reduced
Gradient Algorithms 

The biased penalty function method was selected for 
phase one for several reasons. First of all the method is 
designed to minimize the distortions in the penalty function 
contours which allows for several penalty stages to be 
solved very rapidly. Secondly the method was extremely 
adept at locating the vicinity of the solution after the 
first few stages, thus the transfer to the phase two method 
can be made quickly. Also only the initial penalty multipli­
cation parameter had to be selected which reduced the required 
number of input parameters.

Algorithm 11 was selected for the second phase solu­
tion since the input format was very similar to the phase 
one method, algorithm 1. This reduced the effort in the 
implementation of a program to interface the two algorithms. 
The interface program initially sets up the required 
starting information for algorithm 1. The only changes
made from a normal run for the algorithm were that the

-2line search criteria was set to a value of 10 , the
overall convergence criteria was set to a value of 10” ,̂ 
and the initial penalty parameter was set to a value of 10.
The problem was then solved by algorithm 1 and the resulting 
solution was modified to be input to algorithm 11. This 
modification basically involved the addition of artificial 
variables to satisfy the violated constraints and the 
reordering of the design variables to insure that the
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artificial variables were contained in the initial decision 
variable set. The artificial variable approach was used 
since the search for a feasible point would generally re­
main in the vicinity located by the phase one algorithm. 
Using this procedure the artificial variables are set to 
the exact constraint violations and added to the constraints 
to artificially satisfy the violated constraints. An 
additional term is then appended to the objective function 
which essentially penalizes the objective function for non­
zero values of these artificial variables. The effect of 
this procedure is to rapidly reduce the artificial vari­
ables in the initial solution stages to generate a feasible 
point. The normal approach for location of a feasible 
starting point for algorithm 11 was to simply minimize the 
sum of the violated constraints. This type of procedure 
was not appropriate for the combined solution procedure 
because in satisfying the constraints in this manner no 
attempt is made to stay in the vicinity which the phase 
cne algorithm located, thus essentially wasting much of the 
information supplied by phase one.

The combination of these two algorithms was applied 
to the test problem set from the comparative study and the 
results were quite good. First of all the combined method 
solved all twenty-three of the rated test problem set, 
which neither algorithm 1 or 11 was able to do alone. This 
was because the combination of the two methods complimented 
one another nicely. Algorithm 1 was generally able to
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locate the vicinity of the solution but had trouble satisfy­
ing the constraints and especially the equality constraints. 
Algorithm 11 occasionally had difficulty in moving through 
the design space as on problem 12 and had a tendency to term­
inate at local minima near the starting point for many of the 
additional problems in the test set. The method did perform 
well by maintaining constraint satisfaction and in locating 
the optimum to a very accurate degree. Thus some of the 
weaknesses one method had alone were compensated for by the 
combination with the other method.

The recorded solution times were very fast for the com­
bined methods. The percentage decrease in solution time for 
the combined algorithms over the normal solution times for 
algorithms 1 and 11 on the rated test problem set is presented 
in Table 6.1.

The percentage reduction for the combined methods over 
the solution times reported for algorithm 1 is quite large for 
all of the problems in the study with the exception of prob­
lems 5 and 12 which had unconstrained solutions. For prob­
lems with unconstrained solutions no improvement would be 
expected, but a slight time savings resulted on these problems 
due to the loose line search in algorithm 1 at the initial 
stages. Time savings on these problems are not that impor­
tant to the overall performance of the combined algorithms 
since these problems required only a small amount of compu­
tational time for either of the algorithms alone. The in­
teresting point is that as the problems become more difficult
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Table 6.1 Percentage Improvement in Solution Time for the 
Biased Penalty-Reduced Gradient Combined 
Algorithm over Algorithms 1 and 11.

Problem Percentage Improvement
over Algorithm 1 over Algorithm 11

1 69.6 -32.72 81.3 -180
3 92.6 -80
4 43.8 -42.1
5 14.7 1.5
6 t t
7 44.4 -25.0
8 80.3 -87.7

10 69.2 -90.9
11 75.4 -15.7
12 2.6 t
14 75.4 -7.4
15 92.1 -20.0
16 t 4.9
17 71.9 t
18 90.9 35.0
19 77.0 22.9
20 97.3 33.5
23 61.1 61.1
24 74.9 6.1
25 79.9 68.2
26 t -.3
27 74.1 5.3

t No solution was found with algorithm 1 alone.
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(problems 14-27) the percentage improvement is consistently 
well above 60%. In fact the average percentage time savings 
over the entire test problem set was approximately 68% which 
is slightly better than a two-thirds reduction in computa­
tional time from the amount of time recorded for algorithm 1 
in the comparative study. Now the average solution time for 
the reduced gradient algorithms has been demonstrated to be 
one-half to one-third of the time required for a penalty 
function algorithm so an average reduction in the solution 
time to one-third of the time required by algorithm 1 in the 
comparative study should place the combined method on the 
same level of computational speed as the reduced gradient 
algorithms. This fact is not that obvious from Table 6.1.
The combined method produced slower solution times on most of 
the easier problems but on the more difficult problems the 
solution times were generally better than for algorithm 11. 
The problems where the combined method was significantly 
slower were generally problems in which only one or two con­
straints were active and algorithm 11 had extremely fast 
solution times. Even for these problems, however, the solu­
tion time for the combined methods was well below the average 
solution times for all of the methods.

The overall performance of the combined algorithms is 
best described by relative rankings based on the problems 
solved within a given percentage of the average time. The 
combined method solved 78.3% of the problems within 25% of 
the average solution time, 87% within 50% of the average
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solution time and 100% within 75% of the average solution 
time. This would rank the combination of the algorithms at 
the top in every ranking, even above the reduced gradient 
algorithms.

Performance on the additiaional test problem set was al­
so excellent. Progress on problem 9 was slightly better than 
for either algorithm 1 or 11 alone, and for problem 13 the 
same solution was located as by all of the better gradient 
based algorithms. It was on problems 21, 22 and 30 where the 
combined method really demonstrated its advantage over either 
algorithm applied separately. Algorithm 1 alone was not able 
to satisfy all of the inequality constraints on problems 21 
and 22 but was able to locate the vicinity of the optimal 
solution. On problem 30, algorithm 1 was simply unable to 
satisfy the eleven equality constraints but with a loose line 
search criteria and a relatively low penalty factor the al­
gorithm was able to locate a point in the vicinity of the 
reported solution. Algorithm 11, on the other hand was able 
to satisfy the constraints for all of these problems but it 
terminated after making very little progress on each one.
The combined methods located feasible points very close to 
the reported solution for problems 21 and 22 and was able 
to find the reported solution to problem 30. An excellent 
solution was also recorded for problems 28 and 29 although 
for problem 29 algorithm 1 made very little progress and the 
solution was mainly due to algorithm 11.
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The overall results point out that a combination of the 
biased penalty function algorithm and a generalized reduced 
gradient algorithm can produce a computationally fast and 
robust method. The method is as fast or slightly faster on 
the average as the reduced gradient algorithm was alone and 
added a measure of robustness to both of the algorithms ap­
plied separately. It should be noted, however, that the 
strength of the combined method is due to the application of 
the generalized reduced gradient algorithm to handle the con­
straints directly in phase two, for it was this phase of the 
algorithm which allowed the implementation of the phase one 
algorithm in its present form. Actually the location of the 
optimal region by the phase one algorithm acts as a computa­
tional extension of the reduced gradient algorithm, allowing 
initial explorations to occur in the infeasible region.

6.3 Combination of Biased Penalty and Repetitive 
Linear Programming Algorithms 

The results from the combination of the biased penalty- 
reduced gradient algorithms provides the motivation to in­
vestigate other combinations which have the potential of pro­
ducing a similar algorithm. The implementation of the phase 
one algorithm could be identical to the previous combined 
method if another algorithm which handles the constraints 
directly could be applied as a phase two algorithm. What 
would be desirable would be to implement an algorithm which 
is as readily available as is a penalty function algorithm
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and which is less computationally complex than the reduced 
gradient algorithms. Such a method is the repetitive linear 
programming method. From the comparative study it was deter­
mined that the basic cause of failure for this type of algo­
rithm was the inability to move through an unconstrained 
region to locate the active constraints. The solution times 
on heavily constrained problems were generally quite good for 
the repetitive linear programming methods. It would seem 
then, that this type of method would be an excellent choice 
for a phase two algorithm. The application of the biased 
penalty function method, algorithm 1, as a phase one method 
will be used again to locate the vicinity of the optimal 
solution, and the repetitive linear programming method, 
algorithm 9, will be started from this point.

Interfacing these two algorithms was even an easier task 
than for the biased penalty-reduced gradient combination, be­
cause the repetitive linear programming algorithm did not re­
quire a feasible starting point with respect to the inequality 
constraint set. Artificial variables were used, however, to 
provide initial feasibility for the equality constraint set. 
The artificial variables were introduced to eliminate the 
possibility of divergence of Newton's method in initially 
satisfying the equality constraints.

The recorded solution times were again very good for the 
combined algorithm. The percentage decrease in solution time 
for the combined algorithms over the normal solution times 
for algorithms 1 and 9 on the rated test problem set is
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presented in Table 6.2. As for the combination of algorithms 
1 and 11, this combination solved all of the rated test prob­
lem set, and again for the large majority of the test prob­
lems a significant reduction in the solution time required by 
algorithm 1 was recorded. No improvement was recorded over 
algorithm 1 for problems 4, 5, 10 and 12 since these problems 
only contained variable bounds and no functional constraints. 
The normal solution of algorithm 1 was used for these problems 
since the method of repetitive linear programming does not 
handle this type of problem well. Again, however, the normal 
solution time for algorithm 1 was quite small for these prob­
lems. The only other problem where an improvement in the 
solution time was not produced over algorithm 1 was problem 7 
where the solution time actually increased over 40%. Even 
with this increase the solution time on problem 7 was less 
than 50% of the average time for all of the tested algorithms 
on that problem. On all of the other problems, and especially 
for the more difficult problems the percentage reduction over 
algorithm 1 was quite similar to the biased penalty-reduced 
gradient algorithm combination. The average percentage time 
savings over algorithm 1 for this algorithm on the rated set 
of test problems was found to be on the order of 50%. This 
is again a significant time reduction and places the compu­
tational speed of the algorithm close to the level of the 
reduced gradient algorithms. The percentage improvement over 
algorithm 9 is much the same as for the biased penalty-re­
duced gradient combination over algorithm 11 as can be seen
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Table 6.2 Percentage Improvement in Solution Time for
the Biased Penalty-Repetitive Linear Programming 
Combined Algorithm over Algorithms 1 and 9.

Problem Percentage Improvement
over Algorithm 1 over Algorithm 9

1 64.4 -26.82 79.6 -53.3
3 91.8 -250.04 0.0 t5 0.0 +6 t t
7 -41.1 -1.68 74.1 8.010 0.0 64.2

11 81.9 f
12 0.0 93.9
14 59.3 2.2
15 85.6 -2.9
16 t 84.4
17 36.4 -83.9
18 95.8 30.7
19 77.0 43.8
20 92.9 -18.1
23 70.2 t
24 74.8 -17.6
25 79.7 t
26 t -120
27 56.6 32.6

t Algorithm applied alone did not reach the solution.
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in Table 6.2. The solution time on the easier problems in­
creased by rather large amounts but the solution times on 
these problems were still well below the average solution 
times. Again the best measure of performance is the relative 
rankings. The fact is that the relative rankings for this 
combination are on par with the reduced gradient algorithms 
with 65.2% of the problems solved within 25% of the average 
time, 82.6% of the problems solved within 50% of the average, 
91.3% within 75% of the average time, and 100% of the prob­
lems were solved within 100% of the average time.

The combination of the biased penalty-repetitive linear 
approximation was generally slightly slower than the biased 
penalty-reduced gradient combination. This can be seen in 
Table 6.3 where the percentage increase in solution time for 
the biased penalty-repetitive linear programming combined 
method over the biased penalty-reduced gradient combined 
algorithm is presented. On the average a twenty percent in­
crease in solution time was noted. So while the combination 
of algorithms 1 and 9 ranked slightly behind the combination 
of algorithms 1 and 11 the total rankings are at the level 
of the generalized reduced gradient algorithms and signifi­
cantly above the rankings of either algorithm 1 or algorithm 
9 in the comparative study.

The performance on the additional test problems was also 
fairly good. The solutions found for problems 9 and 13 were 
basically the same as for the combination method of algorithms 
1 and 11. The optimal solution was located for problems 21
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Table 6.3 Percentage Increase in Solution Time for the 
Biased Penalty-Repetitive Linear Programming 
Combined Algorithm over the Biased Penalty- 
Reduced Gradient Combined Algorithm.

Problem Percentage Increase

1 14.62 8.7
3 10.7
4 43.7
5 20.0
6 43.7
7 60.6
8 23.9

10 69.1
11 -36.1
12 2.5
14 39.6
15 44.8
16 68.8
17 55.9
18 —118•3
19 0.0
20 61.6
23 -30.5
24 .6
25 1.0
26 55.3
27 40.4
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and 22 and excellent progress was reported on problem 29.
The highly nonlinear maximum stress constraint in problem 28, 
and the presence of the eleven equality constraints in prob­
lem 30 were not handled well by the repetitive linear pro­
gramming algorithm and no feasible point could be found on 
either of these problems.

6.4 Discussion 
The combination of the biased penalty function algorithm 

with either the reduced gradient algorithm or the repetitive 
linear programming algorithm demonstrated an improved level 
of performance over any of the algorithms applied singly.
This was basically due to the fact that the combined algo­
rithms complimented each other, with each algorithm perform­
ing a specific function in a computationally efficient manner. 
The penalty function algorithm, with a loose line search 
criteria and a loose overall convergence criteria was able to 
locate the vicinity of the solution quickly. The generalized 
reduced gradient algorithm or the repetitive linear pro­
gramming algorithm was then able to satisfy the violated 
constraints and to locate the optimal solution. The gen­
eralized reduced gradient algorithm produced a slightly fast­
er combination and was able to handle even highly nonlinear 
problems and problems which contained many nonlinear equality 
constraints. The repetitive linear programming algorithm 
performed quite well also but was unable to follow extremely
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nonlinear constraints or to make much progress when many 
nonlinear equality constraints were present. The basic 
simplicity and the general good performance of the penalty 
function-repetitive linear programming algorithm are the 
basic advantages of this combination, while the unmatched 
overall performance of the penalty function-generalized 
reduced gradient combination is the advantage of this 
combination.



www.manaraa.com

162

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions 
The first and most noteworthy conclusion which can be 

drawn from the comparative study is that the linear approx­
imation methods and in particular the generalized reduced 
gradient algorithms were more effective than any of the pen­
alty function algorithms. The generalized reduced gradient 
algorithms solved a greater percentage of the test problems 
and were significantly faster than any other type of method. 
This superiority was demonstrated in all of the relative 
rankings based on the number of problems solved within a giv­
en percentage of the average solution time where the gener­
alized reduced gradient algorithms consistently ranked at 
the top. In the study of how the algorithms were affected 
by the type of problem being solved the generalized reduced 
gradient algorithms were consistently two to three times 
faster than the penalty function algorithms. The generalized 
reduced gradient algorithms also demonstrated a superior 
level of control from a users standpoint. This increase in 
control was due to the ability to specify the level of toler­
ance allowed in the active constraint set and for the vari­
ables at a bound. The penalty function algorithms had no 
such feature and there was no way of guaranteeing any
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specific level of constraint satisfaction. Problem dependent 
user parameters were not found to be as important to the 
generalized reduced gradient algorithms as to the penalty 
function algorithms. There was no need to specify any penal­
ty or penalty reduction factors so although more control over 
problem solution was available very few input parameters had 
to be selected by the user. The standard values of the input 
parameters as suggested in the users manual for the general­
ized reduced gradient algorithms worked very well for the test 
problems in the comparative study and rarely was any parameter 
adjustment required. The generalized reduced gradient algo­
rithms were also able to obtain a very high level of accuracy 
in the final solution. This is demonstrated by the high 
relative rankings even when the total allowed error was very 
small. Again no other type of algorithm was able to repro­
duce this feature. The generalized reduced gradient algo­
rithms were also found to be effective on a wide variety of 
problems including problems containing equality constraints 
which were handled in a particularly effective fashion. So 
the generalized reduced gradient algorithms have clearly 
demonstrated a superior level of performance over the other 
classes of methods being both faster and able to solve more 
of the test problem set than the penalty function algorithms. 
The only problems encountered with the generalized reduced 
gradient algorithms were the tendency to follow constraints 
to local minima on several of the additional test problems 
and the inability of the presently available generalized
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reduced gradient algorithms to handle problems where deriva­
tive information may not be calculated accurately. The prob­
lem of the generalized reduced gradient algorithms follow­
ing constraints to local minima is not a serious drawback 
since essentially all algorithms available today search for 
local minima, but following the constraints on several of 
the highly constrained problems resulted in very little 
progress being made by the generalized reduced gradient algo­
rithms. If the generalized reduced gradient algorithms stop 
after making little progress on a problem the user is en­
couraged to try an alternate starting point.

The repetitive linear programming methods, especially 
algorithm 9 (RALP), produced excellent solution times on a 
majority of the problems but their behavior became very 
erratic when required to move through any unconstrained 
region, or on extremely nonlinear problems. This type of 
behavior would have to be expected of an algorithm based on 
a linear programming technique.

The penalty function algorithms were found to be some­
what slower than the linear approximation algorithms. Out 
of all of the penalty function algorithms tested, however, 
those applying a variable metric technique for the generation 
of search directions for the successive penalty stages proved 
to be most effective, but even these methods required two to 
three times more computational time than the generalized 
reduced gradient algorithms. The basic trouble encountered 
with the penalty function algorithms was in obtaining
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sufficient constraint satisfaction. The exterior penalty 
function algorithms generally approached the solution from 
the infeasible region and frequently were unable to satisfy 
all of the constraints to any degree of accuracy. The inter­
ior penalty function algorithms had the same basic difficulty 
with the exception that the solution was approached from the 
feasible region and the problem was not with inequality con­
straint violation but in not being able to obtain sufficient 
constraint tightness to zero in on the optimal value of the 
objective function. A similar difficulty was noted for both 
the interior and exterior penalty functionson equality con­
strained problems, along with a tendency to get hung up on an 
equality constraint and not being able to move. To obtain 
any significant level of accuracy in the objective function 
and constraints at the solution tight convergence was re­
quired at each successive stage and the penalty parameter 
had to be increased or decreased in relatively small levels 
to prevent the contours from becoming overly distorted. This 
resulted in the penalty function algorithms requiring an ex­
cessive amount of solution time. The biased penalty function 
algorithm had slightly less difficulty in obtaining constraint 
satisfaction which was most likely due to the fact that the 
distortions of the successive penalty contours are less than 
for the other penalty function algorithms, but even the bi­
ased penalty method did require some parameter adjustment 
to achieve constraint satisfaction. This type of parameter 
adjustment was necessary for almost every exterior penalty
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function algorithm. The one advantage of the penalty func­
tion algorithms was that methods are available which do not 
require derivatives. This type of method, as was previously 
mentioned, is not currently available in any method employing 
a generalized reduced gradient approach. These nongradient 
penalty function algorithms are the only methods available 
to solve the problems where gradient information does not 
exist.

All of the algorithms tested were found to be extremely 
sensitive to the number of design variables in a problem.
The solution times increased dramatically for any increase 
in the total number of design variables. As the number of 
variables is increased to the level of 75 to 100 a solution 
time of well over 1000 seconds of time could be expected 
(on a CDC 6500 machine). This estimation is based on the 
extrapolated time from the solution time required on a set 
of quadratic problems which would have to be considered as a 
lower bound on the solution time expected in general usage. 
The largest number of design variables contained in any 
problem considered in the comparative study was forty-eight 
and only six of the algorithms tested were able to produce a 
solution. The recorded solution times on this problem ranged 
from approximately sixty seconds to well over two hundred 
seconds, with three best solution times on the problem 
achieved by generalized reduced gradient algorithms. Another 
limitation regarding the number of design variables which can 
be handled by the majority of codes currently available is
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due to the program dimensioning. Several of the algorithm 
are limited to a maximum of fifty design variables and 
others to one hundred. The two exceptions are the general­
ized reduced gradient algorithm OPT and the biased penalty 
function algorithm BIAS, both of which are variably dimen­
sioned and the only physical limitation on the size of prob­
lem which can be handled is the amount of storage space 
available on the computer system being used. An increase in 
the number or type of constraints or an increase in the 
nonlinearity did not have as large an effect on the solution 
times as did an increase in design variables. The percentage 
change for variations in the problems was remarkably similar 
for all of the various types of algorithms. This means that 
the generalized reduced gradient algorithms would be expected 
to hold the 100% to 200% time savings over the penalty func­
tion algorithms on all types of problems. This result simply 
points out the desirability of the generalized reduced gradi­
ent algorithms on large scale problems or for problems where 
the objective function or constraints require a large amount 
of computational time to evaluate.

A combination of a penalty function algorithm with a 
method to handle the constraints directly was found to be 
very effective. The biased penalty function algorithm with 
a loose line search criteria and a loose overall convergence 
criteria was found to be very effective in locating the 
vicinity of the optimum quickly. A generalized reduced 
gradient algorithm, starting from the point located by the
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penalty function algorithm, was then very effective at sat­
isfying the constraints and converging to the optimal solu­
tion. This combination proved to be very fast and reduced 
the tendency of the generalized reduced gradient algorithm 
to follow constraints to a local minimum. The total perform­
ance of this combination proved to be superior to the per­
formance of any single algorithm in the relative rankings, 
including the generalized reduced gradient algorithms.
This superior level of performance was due more to an increase 
in the number of test problems solved than to a decrease in 
computational speed although on several of the more difficult 
problems a significant reduction in time over the generalized 
reduced gradient algorithm was recorded. The application of 
a repetitive linear programming in place of the reduced 
gradient algorithm for the combined method also proved to be 
effective. The performance of this combination on the test 
problem set was as good as the generalized reduced gradient 
algorithms in the relative rankings for the comparative study. 
This combination was not quite as fast as the penalty func­
tion-generalized reduced gradient combination, requiring an 
average of approximately twenty percent more time than the 
penalty function-generalized reduced gradient combination 
on the test problems. The combination still had difficulty 
with highly nonlinear problems but the overall simplicity, 
the availability of the methods, and the relatively good 
performance are the strengths of this combination. Thus the
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performance of even the best methods can seem to be en- 
ehanced by the combination of algorithms.

In summary then there are methods currently available 
which will handle a broad range of nonlinear programming 
problems in an efficient manner. Difficulties with large 
scale problems and the possibility of locating local minima 
exist but the overall usefulness of the available algorithms 
is sufficient to encourage their general use.

7.2 Recommendations
Although no single algorithm can be expected to solve 

every problem encountered, it is the recommendation of this 
study that the generalized reduced gradient algorithms should 
be applied to solve the problem before any other method is 
tried. The ability of this class of algorithms to solve 
problems in an efficient manner is not matched by any other 
class of algorithms. The high degree of user control in­
herent in the generalized reduced gradient algorithms also 
lends itself to general problem solution. The author would 
also recommend further development of the generalized reduced 
gradient algorithms. Most of the reduced gradient algorithms 
have been developed recently and little work has been done to 
determine the best method for generating search directions, 
the manner of basic variable selection and subsequent basis 
changing, and the numerical technique of solving the set of 
nonlinear equations. Another area of possible research is 
the application of the same type of logic contained in the
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generalized reduced gradient algorithms to produce an algo­
rithm which is not dependent upon gradient information. 
Perhaps this research would result in a generalized reduced 
gradient optimization package. This type of package could 
then be applied to problems with or without gradient infor­
mation available.

Another recommendation would be that any future compari­
son of nonlinear programming algorithms should include at 
least one of the generalized reduced gradient algorithms 
tested in this study to provide a reference to the relative 
performance of the additional algorithms. Finally further 
investigation of the combination of penalty function 
algorithms and the linearization type methods is recommended 
since this type of combination has demonstrated a level of 
performance which is superior to any single algorithm.
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Appendix A 
Description of Algorithms

(1). METHOD OP MULTIPLIERS (BIASED PENALTY FUNCTION)
AVAILABILITY: K. M. Ragsdell, School of Mechanical
Engineering, Purdue University, W. Lafayette, Indiana.
REFERENCE: Schuldt et all 143]
METHOD: Exterior penalty function of the form

P(x,a(m),T(m>) = f(x) + R f {<gk (x) + 0j[m)>2 - [aj[m)]2}
k-1

+ R I {[h (x) + T <m)]2 - [x<m)]2} £*1 * * 1

where

°km+1> s <^ k (5(m)) + akm)>; k = 1 '2 '3' - - w K

and
T(m+U = h ^(£(m)} + T(m); £-1,2,3, ...,L

FEATURES: This form of penalty function seeks to minimize
distortions of the successive penalty function contours.
The method leaves the curvature of the contours unchanged 
from stage to stage for linear constraints and a second 
order influence on the curvature is present for nonlinear 
constraints. The computational algorithm applies the 
Davidon-Fletcher-Powell technique to generate the uncon­
strained search directions and handles variable bounds 
internally. The penalty parameter R does not vary from stage 
to stage.
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(2). SEEK1
AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall 151]
METHOD: Semi interior penalty function (once constraints are
satisfied they generally will remain satisfied) of the form

K L
P(x) « f(x) + 1020 I I<gk (x)>| + 1020 I |h. (x)|

k=l K jl=1 £

FEATURES: A Hooke-Jeeves direct search is made followed by a
random check. If the random check produces a better point 
the method is restarted from that point.

(3). SEEK3
AVAILAEILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall [51]
METHOD: Interior penalty function of the form

K i L h. (x)
P(x) = f (x) + R I — + I — — —

k=l gk (x) &=1 R

FEATURES: To obtain a feasible starting point the penalty
function of algorithm (2) is applied. The successive 
stages are generated by updating the penalty parameter 
by R*REDUCE where the value of REDUCE is much less than one.

(4). APPROX
AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall [51]
METHOD: Successive linear programming algorithm.
FEATURES: The method of Griffith and Stewart is employed,
with the Simplex algorithm to handle the successive linear 
programming problems (Note: variable bounds are treated as
inequality constraints).
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(5). SIMPLX
AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall [51]
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: The simplex direct search method is employed for
the unconstrained stages. The stages are updated as for 
algorithm 3.

(6). DAVID
AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall [51]
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: The Davidon-Fletcher-Powell technique is applied
to the unconstrained stages. The stages are updated as for 
algorithm 3.

(7). MEMGRD
AVAILABILITY: J. N. Siddall, School of Mechanical
Engineering, McMaster University, Hamilton, Ontario, Canada.
REFERENCE: Siddall [51]
METHOD: Interior penalty function (same as for algorithm 3).
FEATURES: Miele's memory gradient algorithm [52] is
employed for the unconstrained penalty stages. The stages 
are updated as for algorithm 3.

(8). GRGDFP
AVAILABILITY: Proprietary code owned by the Whirlpool
Corporation, Benton Harbor, Michigan.
REFERENCE: LaFrance [53]
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METHOD: Generalized reduced gradient algorithm.
FEATURES: The Davidon-Fletcher Powell technique is used
to generate the search directions. The introduction of 
slack variables for the inequality constraints and arti­
ficial variables for the violated constraints is required 
of the user.

(9). RALP
AVAILABILITY: S. B. Schuldt, Honeywell Corporate Research
Center, Bloomington, Minnesota.
REFERENCE: Schuldt [54]
METHOD: Successive linear programming algorithm.
FEATURES: The method of Griffith and Stewart is employed
with Newton's method applied to maintain equality constraint 
satisfaction. The bounded simplex method is employed to solve the successive linear programming problems.

(10). GRG
AVAILABILITY: Computer and Information Science Department,
Cleveland State University, Cleveland, Ohio.
REFERENCE: Lasdon et all [55, 56]
METHOD: Generalized reduced gradient algorithm.
FEATURES: The Broyden-Fletcher-Shanno technique is used
to generate the search directions. The search for a 
feasible starting point is accomplished by minimizing the 
sum of constraint violations again applying the BFS tech­
nique. Variable bounds are handled internally.

(11). OPT
AVAILABILITY: K. M. Ragsdell, School of Mechanical
Engineering, Purdue University, W. Lafayette, Indiana.
REFERENCE: G. A. Gabriele [57]
METHOD: Generalized reduced gradient algorithm.
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FEATURES: The conjugate gradient technique of Fletcher-
Reeves is employed to generate the search directions.
The search for a feasible starting point may be handled 
internally with the sum of the constraint violations 
minimized by Powells conjugate direction method or by the 
user by the introduction of artificial variables. The 
variable bounds are handled internally.

(12). GREG
AVAILABILITY: J. Abadie, Electricite' De France, Paris,
France.
REFERENCE: Guigou [58]
Method: Generalized reduced gradient algorithm.
FEATURES: The conjugate gradient technique of Fletcher-
Reeves is employed to generate the search directions.
The search for a feasible starting point is handled 
internally by the introduction of artificial variables. 
The variable bounds are also handled internally.

(13). COMPUTE II METHOD 0
AVAILABILITY: Gulf Oil Corporation, Houston, Texas.
REFERENCE: Gulf Oil Corporation [59]
METHOD: Exterior penalty function of the form

Xi K
P (x, a, 6) = f(x) + A{ I a ahj(x) + [ ^ ( x )  }

— 1 K = 1

where A is the penalty coefficient, a. are positive scale 
factors, and J

«k = 0 if gk (x) < 0
Sk = 1 if gk (x) > 0

FEATURES: The Hooke-Jeeves direct search technique is
applied to the unconstrained stages. The penalty stages aregenerated by multiplication of A by a constant at each 
stage. Scale factors are employed to avoid domination of 
the penalty function by any constraint or group of constraints
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and are recalculated at the beginning of each stage.
All input parameters are set internally and the initial 
penalty coefficient is set so that at the initial stage 
the penalty function is most sensitive to the objective 
function. The input parameters may be set by the user if 
he so desires. Variable bounds are handled internally.

(14). COMPUTE II METHOD 1
AVAILABILITY: Gulf Oil Corporation, Houston, Texas.
REFERENCE: Gulf Oil Corporation [59]
METHOD: Exterior penalty function (same as for algorithm 13).
FEATURES: Same as for algorithm 13 with the exception that
the Conjugate Gradient technique of Fletcher-Reeves is 
employed to generate the search directions for the penalty 
stages.

(15). COMPUTE II METHOD 2
AVAILABILITY: Gulf Oil Corporation, Houston, Texas.
REFERENCE: Gulf Oil Corporation [59]
METHOD: Exterior penalty function (same as for algorithm 13).
FEATURES: Same as for algorithm 13 with the exception that
the Davidon-Fletcher-Powell technique is employed to 
generate the search directions for the penalty stages.

(16). COMPUTER II METHOD 3
AVAILABILITY: Gulf Oil Corporation, Houston, Texas.
REFERENCE: Gulf Oil Corporation [59]
METHOD: Exterior penalty function (same as for algorithm 13).
FEATURES: Same as for algorithm 13 with the exception
that Keefer's Simpat algorithm [60] is employed to generate 
search directions for the penalty stages. This method 
utilizes a pattern search technique for the variables near 
their bounds and the Simplex method of Nelder and Mead [61] 
for the rest of the variables.
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(17). EXPEN #1
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function of the form

K , L 2P (x) — f (x) + R I <g. (x) > + R J
k=l K JL=1 1

FEATURES: A univariate search technique is applied to the
successive penalty stages. Each stage is updated by 
multiplication of the penalty factor R.

(18). EXPEN #2
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State Univesrity of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The method of steepest descent is applied to
the successive stages. The quadratic line search was 
used.

(19). EXPEN #3
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala-[62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Conjugate Direction method of Powell is
applied to generate search directions for the successive 
stages. Again the quadratic line search was used.
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(20). EXPEN #4
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Conjugate Gradient technique of Fletcher-
Reeves is applied to generate search directions for the 
successive stages. The quadratic line search was used.

(21). EXPEN #5
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: The Variable Metric search technique of Davidon-
Fletcher-Powell is applied to generate search directions 
for the successive stages. The quadratic line search was 
used.

(22). EXPEN #6
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Exterior penalty function (same as for algorithm 17).
FEATURES: A Hooke-Jeeves pattern search is applied to the
successive stages.

(23). IPENAL #1
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Interior penalty function of the form



www.manaraa.com

FEATURES i A univariate search technique is applied to the 
successive penalty stages. An extrapolation scheme is 
employed between stages to predict the minimum. The 
penalty was reduced by a constant to generate the next 
stage.

(24). IPENAL #2
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Interior penalty function (same as for algorithm 23).
FEATURES: The method of steepest descent is applied to
the successive stages. The quadratic line search was used 
and the extrapolation scheme was used as on algorithm 23.

(25). IPENAL #3
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Interior penalty function (same as for algorithm 23).
FEATURES: The Conjugate Direction method of Powell is
applied to generate search directions for the successive 
stages. The quadratic line search was used and the 
extrapolation scheme was used as on algorithm 23.

(26). IPENAL #4
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
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METHOD: Interior penalty function (same as for algorithm 23).
FEATURES: The Conjugate Gradient technigu of Fletcher-
Reeves is applied to generate search directions for the 
successive stages. The quadratic line search was used and 
the extrapolation scheme was used as on algorithm 23.

(27). IPENAL #5
AVAILABILITY: R. W. Mayne, School of Mechanical
Engineering, State University of New York at Buffalo.
REFERENCE: Afimiwala [62]
METHOD: Interior penalty function (same as for algorithm 23).
FEATURES: The Variable Metric search technique of Davidon-
Fletcher-Powell is applied to generate search directions 
for the successive stages. The quadratic line search was 
used and the extrapolation scheme was used as an algorithm 
23.

(28). SUMT-1
AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.
REFERENCE: Mylander et all [1]
METHOD: Interior penalty function of the form

_ K L - _
P(x,R) = f(x) - R I In g, (x) + I [h „ (x)/R]

k=l k 1=1
FEATURES: The generalized Newton-Raphson method modified
to handle indefinite Hessian matrices is employed to 
generate the search directions for the successive stages. 
The value of the penalty parameter R is reduced by a 
constant factor to form the successive stages. An 
acceleration procedure using the Lagrange extrapolation 
technique is applied.
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(29). SUMT-2
AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.
REFERENCE: Mylander et all [1]
METHOD: Interior penalty function (same as for algorithm 28)
FEATURES: Same as for algorithm 28 with the exception that
when an orthogonal move is made because of an indefinite 
Hessian matrix a negative gradient component is added to 
the orthogonal move vector.

(30). SUMT-3
AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.
REFERENCE: Mylander et all [1]
METHOD: Interior penalty function (same as for algorithm 28)
FEATURES: Same as for algorithm 28 with the exception that
the method of steepest descent is used to generate search 
directions for the successive stages.

(31). SUMT-4
AVAILABILITY: Research Analysis Corporation, McLean,
Virginia.
REFERENCE: Mylander et all [1]
METHOD: Interior penalty function (same as for algorithm 28)
FEATURES: Same as for algorithm 28 with the exception that
a modified Fletcher-Powell Variable Metric technique is 
used to generate the search directions for the successive 
stages.
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(32). E04HAF - 0
AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.
REFERENCE: The University of Liverpool Computer Laboratory
[6 3]
DESCRIPTION: Interior-Exterior penalty function of the form

_ J K 9
P(x,R) = f (x) - R £ logg.(x) + 1/R £ {min (0 ,g. (x)) }

j=l 3 j=J 3

+ 1/R I hhx) 
n=l *

This penalty form was previously used by Lootsma [6 4]. The 
inequality constraints are divided into two subsets. The 
inequality constraints which are not violated at the starting 
point are contained in the log penalty term and those 
inequality constraints which are violated at the starting 
point are contained in the g^(x)2 penalty term.
FEATURES: The Conjugate Direction algorithm of Powell is
employed to generate search directions for the successive 
stages. Each new stage is generated by reducing the penalty 
parameter by a constant. Polynomial extrapolation of the 
successive cycles is employed up to order 6 which is 
employed to accelerate the convergence of the method.

(33). E04HAF - 1
AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.
REFERENCE: The University of Liverpool Computer Laboratory
[63]
DESCRIPTION: Interior-Exterior penalty {same as for algorithm
32)
FEATURES: Same as for algorithm 32 with the exception that
the Variable Metric technique of Broyden-Fletcher-Shanno 
is employed to generate search directions for the successive 
stages.
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(34). E04HAF - 2
AVAILABILITY: The University of Liverpool Computer
Laboratory, Liverpool, England.
REFERENCE: The Univesrity of Liverpool Computer Laboratory
[63]
DESCRIPTION: Interior-Exterior penalty (same as for al­gorithm 32).
FEATURES: Same as for algorithm 32 with the exception that
a modified Newton approach is employed to generate search 
directions for the successive stages.

(35). COMET
AVAILABILITY: D. M. Himmelblau, The University of Texas,
Austin, Texas.
REFERENCE: Staha [65]
DESCRIPTION: Exterior penalty function of the form

P(x,R) - Min[0,{t-f(x)}]2 + I Min [0,g. (x)]2
k=l K

L ?
+ I h‘ (x)£=1 *

FEATURES: This is another penalty technique which seeks toreduce the distortion of the penalty surface. The variable 
metric technique of Fletcher is employed to generate the 
search directions for the successive stages.
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Appendix B
Test Problem Descriptions and Fortran Listings

(1). Test problem #1 used by Colville [27] and test 
problem #1 used by Eason and Fenton [40] •

GENERAL INFORMATION:
5 Variables

10 Functional inequality constraints
5 Variable bounds; x ^ t O  j =1,2, 5

STARTING INFORMATION:
* = [0,0,0,0,1] f(x) = 2.0o o

SOLUTION:
x* = [.3, .33329998, .4, .42790241, .22435808] 
f(x*) = 3.234866708
Constraints #3, 5, 6 and 9 are active.

gi(x0> “ 40 
9 2 (* o > = 4

(xo> = 1 
g7 <xo> = 39
g8 (5fo> = 59 
g9(5o> - 0 
910lxo> = 0

g3ixo) = .25 
94 (x0) = 3 
g5 (xo> =1.2
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F UNCTION AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #1

FUNCTION F(X>
DIMENSION X ( l )
DIMENSION E ( 5 ) f C < 5 f 5 ) f D < 5 >
DATA ( C ( I ) f 1-1r25) /30.f-20.f-10. f 32.f-10»f-20.f39.f - 6 . f  

1-31. f 32.f-10.t - 6 . t I O . f - A . f-10.f32.f-31.f-6.f39.f-20.f-10.f 
232.f-10.f-20.f30./

DATA ( E < I > f I » 1 f 5 )  / - 1 5 . f - 2 7 . f - 3 6 . f - 1 8 . f - 1 2 . /
DATA < D ( I ) r1=1f5) /4. f 8.r 10. f 6.f2./
U i » 0 . 0
U 2 = 0 . 0
U 3 = 0 . 0
DO 10 J = 1 f5
U 1 = U 1 + E < J )*X < J )
U 3=U 3+D <J)*X<J)#X<J>#X<J>
DO 10  I = 1 f 5
U 2 = U 2 + C < I r J ) # X < I ) # X ( J )

10 CONTINUE
F « < U 1 + U 2 + U 3 ) /1 0 .0
RETURN
END

SUBROUTINE CONST(XfNCONSfP H I )
DIMENSION X ( 1 ) fP H I < 1 ) fA < 1 0 f5 ) f B U 0 )
DATA ( A ( I ) f1=1rSO) / - 1 A . fO.f-3.5f0.fO.f2.f~1.r- 1 .f1 . , 1 .f 

1 2 . f —2 » f 0 .f- 2 »  f“ 9 .fO.f—I.f ~2 »f2.f1*f0*f0.f2.f0.f- 2 .f —4 * f- 1  * f
2-3.f3»f1.f1.f4. f0. f-4.f1.f0. f-1.f-2* f4. f1.f0. f2. f0. f-l.r
3-2.QfO. f-1.f-1.f5.f1./

DATA < B < I ) f I « 1 f 1 0 )  / - 4 0 . f - 2 . f- . 2 5 f- 4 . f - 4 . f- 1 . f - 4 0 . f - A O . f5 . f 1 . /  
DO 5 1 = 1 f 10 
P H I ( I ) = 0 » 0  
DO 2 J “ 1 f5 

2 P H I < I ) = P H I ( I > + A < I fJ ) # X < J )
5 P H I < I ) = P H I < I ) - B < I >

DO 10 1 = 1 f5 
10 P H I < 1 0 + 1 > = X < I>

RETURN
END
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(2). Test problem #2 used by Eason and Fenton [40].

GENERAL INFORMATION:
3 Variables
2 Functional inequality constraints 
6 Variable bounds x. £ 0 j =1,2,3 

xL < 20 x2 < 11 x3 < 42

STARTING INFORMATION: 
xQ = [10,10,10]

£ <*o> - -1
= 50 g2 (Xq ) = 22

SOLUTION:
x* = [20,11,15] 
f (x*) = -3.3
Constraint #2 is active at the solution.

COMMENTS: This problem seeks to design a rectangular box
to maximize volume, subject to post office restrictions 
on the length plus the girth and individual limits on the 
length, depth and height of the box.
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F U N C T I O N  A N D  C O N S T R A I N T  LI S T IN G  FOR P R O B L E M  #2

FUNCTION F ( X )
DIMENSION X ( l >
F * “ X< 1 > * X < 2 > # X < 3 ) / 1 0 0 0 . 0
RETURN
END

SUBROUTINE CONST<XrNPHIfP H I )
DIMENSION X ( l ) r P H K l )
P H K 1 > = X < 1 ) + 2 . 0 * < X < 2 > + X < 3 > >
P H I < 2 ) = 7 2 . 0 - X ( 1 ) “ 2 . 0 * < X ( 2 ) + X < 3 ) )
RETURN
END
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(3). Test problem #3 used by Colville [27] and test problem
#3 used by Eason and Fenton [40].

GENERAL INFORMATION:
5 Variables
6 Functional inequality constraints 

10 Variable bounds
78 < < 102
33 < x2 < 45 
27 £ x3 £ 45

27 * x < 45 4
27 < x5 £ 45

STARTING INFORMATION
[78.62, 33.44, 31.07, 44.18,35.22]

f(x ) = 3.037395 o
g,(x } = 91.7927319 o
g2 (xQ) = .207268111
g* (x ) - 8.89293266 3 o

g4 (xo) = 11.1070673 
gc (x ) = .131578229

3  O

= 4.86842177b O

SOLUTION
x* = [78, 33, 29.995256, 45, 36.775813] 
£<x*) = 3.06655387



www.manaraa.com

195
F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #3

FUNCTION F<X)
DIMENSION X ( l )
F « ( 5 . 3 5 7 8 5 4 7 * X ( 3  > * X  < 3 )  + ♦8 3 5 6 8 9 1 * X ( 1 ) * X ( 5 ) + 3 7 ♦ 2 9 3 2 3 9 * X  <1)  

1 - 4 0 7 9 2 . 1 4 1 > / 1 0 * * 4  
RETURN 
END

SUBROUTINE CONST<X . N P H I t P H I )
DIMENSION X<1> r P H I (1>
R l * 8 5 . 3 3 4 4 0 7 + . 0 0 5 6 8 5 8 * X  < 2 ) * X ( 5 )  + . 0 0 0 6 2 6 2 * X  < 1 ) * X  < 4 ) - . 0 0 2 2 0 5 3 *  

1 X < 3 ) *X < 5 >
R 2 * 8 0 . 5 1 2 4 9 + . 0 0 7 1 3 1 7*X< 2 ) *X  < 5 )  + . 0 0 2 9 9 5 5 * X  < 1 ) * X  < 2 > + . 0 0 2 1 8 1 3 *  

2 X ( 3 ) * X < 3 )
R 3 ~ 9 .3 0 0 9 6 1  + . 0 0 4 7 0 2 6 * X  < 3 ) * X ( 5 )  + . 0 0 1 2 5 4 7 * X  < 1 ) * X ( 3 )  + . 0 0 1 9 0 8 5 *  

3 X < 3 ) * X < 4 )
P H I < 1 >=R1 
PHI < 2 ) s * 9 2 . 0 - R l  
P H I < 3 ) = R 2 - 9 0 .
P H I < 4 ) ® 1 1 0 . 0 - R 2  
P H I ( 5 ) = R 3 - 2 0 . 0  
P H I ( 6 ) “ 2 5 . 0 -R 3  
RETURN 
END
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(4). Test problem #4 used by Colville [27] and test problem 
#4 used by Eason and Fenton [40] (Wood's Test Function).

GENERAL INFORMATION:
4 Variables
8 Variable bounds -10 £ x^ £ 10 j=l,2,3,4

STARTING INFORMATION:
Xq = [-3, -1, -3, -1]
f(x ) = 1.9192 x 104 o

SOLUTION:
X *  = [ 1 ,  1 ,  1 ,  1]

f (x*) = 0

COMMENTS: This problem is a four dimensional version
of Rosenbrock's test function.
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F U N C T I O N  L I S T I N G  F O R  P R O B L E M  #4
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FUNCTION F < X )
D IM EN SIO N  X < 1 )
F « 1 0 0 . 0 # < X < 2 ) - X < 1 > # X < 1 > > * # 2 + < 1 . * - X < 1 > > # * 2 + ? 0 . * < X < 4 > - X < 3 > # X < 3 > ) # # 2  

1 + 1 0 . 1 * < < X < 2 > - 1 . 0 > * * 2 + < X < 4 ) - l . ) * * 2 ) + l ? . 8 * ( X < 2 > - l . > # < X < 4 ) - 1 * )
2 +  <1 * 0 - X  < 3 ) ) # # 2  

RETURN 
END
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(5). Test problem #5 used by Eason and Fenton [40] 
(Rosenbrock*s Test Function).

GENERAL INFORMATION:
2 Variables
4 Variable bounds -2 £ x . £ 2j

STARTING INFORMATION:
xq = 1-1.2, 1]
f(x ) = 24.2 o

SOLUTION:
x* = [1, 1]
f(x*) = 0
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F U N C T I O N  L I S T I N G  FOR P R O B L E M  #5

FUNCTION F ( X )
DIMENSION X ( l )
F = 1 0 0 . 0 # < X < 2 ) - X < 1 > * X C I > > * * 2 + < 1 . 0 - X < 1 > > # * 2
RETURN
END
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(6). Test problem #6 used by Colville [27] and test 
problem #6 used by Eason and Fenton [40].

GENERAL INFORMATION:
6 Variables
4 Equality Constraints 

12 Variable bounds
0 < xx * 400 340 < x4 < 420
0 S. x2 * 1000 -1000 < x5 < 1000

340 < x3 < 420 0 < xg £ .5236

STARTING INFORMATION:
x q = [390, 1000, 419.5, 340.5, 191.175, .5]
f(x J  = 42.09 o
h. (a? ) = -577.149733 h, (x ) * 505.628021J. o J o
h„(5? ) = -485.540341 h. <x ) = -389.350454

4. O 4  0

SOLUTION #1:
x* = [201.78617, 100,382.96324, 419.9228,-10.784454 

.07317686]
£(x*) = 8.85358521 

SOLUTION #2:
x = [107.8034355, 196.3274, 373.82968, 420, 21.311091 

.15329950]
f (x*) « 8.927597736

COMMENTS: This problem concerns the optimization of an
electrical network (two nodes).
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #6

FUNCTION F ( X )
DIMENSION X<1)
F = 0 * 0
I F < X < 1 )  » G E » 0 *0 » A N D *X U )  ♦LT*300» ) F » F + 3 0 . 0 * X U >  
I F ( X (  1 )  »GE*3 0 0 * 0 )  F « F + 3 1 . 0 * X U >
I F < X ( 2 ) * G E » 0 * 0 * A N D * X ( 2 ) * L T » 1 0 0 * 0 )  F « F + 2 8 .0 # X < 2 >  
I F < X ( 2 ) * G E * 1 0 0 * 0 * A N D * X ( 2 ) * L T * 2 0 0 * 0 )  F *F + 2 9 .0 # X < 2 >  
I F ( X ( 2 ) » G E * 2 0 0 • 0 )  F - F + 3 0 . 0 * X ( 2 )
F = F / 1 0 * # 3
RETURN
END

SUBROUTINE EQ U A L<XrPH IfN PS I>
DIMENSION X U ) » P H I U )
A - ♦90798  
B = 1 3 1 * 0 7 8  
A A = .0 0 8 8 9  
B B = 1 .4 8 4 7 7  
C~300»0  
Das2 0 0 * 0
PHI <1)  =C-X  < 3 ) * X  < 4 ) /B*COS < BB-X ( 6 )  ) +X (3  ) *X  < 3 )  *A /B*COS C BB-AA) - X  ( 1 )
P H I < 2 ) * - X ( 3 ) # X ( 4 ) /B *C O S <BB+X<A ) ) + X ( 4 ) # X < 4 ) #A/B#COS( BB»AA) - X ( 2 )
P H I< 3 )= D -X < 3 ) * X < 4 ) /B * S IN < B B - - X < 6 > )+ X < 3 ) # X < 3 > * A /B * S IN < B B ~ A A )
P H I< 4 > ® -X < 3 ) # X < 4 ) / B # S I N < B B + X ( 6 ) > + X ( 4 > * X < 4 > # A /B * S I N < B B - A A ) “ X<5>
RETURN
END
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(7). Test problem #7 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables
1 Functional inequality constraint 
4 Variable bounds 0 < x. s 5 j =1,2

STARTING INFORMATION:
x q = 12.5, 2.5]
f(x ) = .519472 o
g, (x ) = -52.875 i o

SOLUTION:
x* = [1.28667635, .53046168] 
f(x*) = 1.62058332 
Constraint #1 is active.

COMMENTS: This problem concerns the design of a journal
bearing to minimize a weighted function of frictional 
moment, angle of twist of the shaft, and lubrication oil 
temperature rise. The functional constraint expresses 
a minimum load-carrying requirement at a given speed. 
x1 = radius of bearing; x2 = bearing half length.
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #7

FUNCTION F<X)
DIMENSION X ( l )
F * = ( * 4 4 # X ( l ) # X ( i . ) # X < l ) / < X < 2 ) # X < 2 ) ) + 1 0 » 0 / X < l )  + »592#X< l  ) / < X ( 2 )  

1 * X < 2 ) * X < 2 ) > > / 1 0 . 0  
RETURN 
END

SUBROUTINE C O N S T (X rN P H IrP H I)
DIMENSION X ( l ) f P H K l )
P H I ( 1 ) « 1 . 0 - 8 . 6 2 * X < 2 ) * X ( 2 ) * X < 2 ) / X < 1 >
RETURN
END
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(8). Test problem #8 used by Eason and Fenton [40].

GENERAL INFORMATION:
3 Variables
2 Functional inequality constraints 
6 Variable bounds 
0 ^ x <36

0 * x, * 125
0 < x2 * 5

STARTING INFORMATION:
xQ = [22.3, .5, 125]
f(x ) = -3.88334111 o
gl(xo) = 426.355000 92 t*0) = -.358015625

SOLUTION:
x* - [17.79933636, 2.1305717,115.00142]
f(x*) = -5.6847825
Constraints #1 and 2 are active.

COMMENTS: This problem concerns the design of a solid
disk flywheel for maximum energy storage subject to con 
straints on the weight, diameter, speed of rotation 
and width. The distortion energy theory of failure 
provides a constraint based on the internal stresses.

- Alternate optima may be found -
x. = flywheel diameter; x2 = flywheel thickness; 

x^ = rotational speed
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #8

FUNCTION F<X)
DIMENSION X<1)
F » - * 0 2 0 1 * X U > * X < 1 > * X U > * X < 1 ) * X < 2 > * X < 3 > * X < 3 > / 1 0 * * 7
RETURN
END

SUBROUTINE C O N S T(X rN P H IrP H I)
DIMENSION X ( l ) r P H I U )
P H I ( 1 ) = 6 7 5 . 0 - X ( 1 ) # X < 1 ) #X < 2 )
P H I < 2 ) » * 4 1 9 - X U ) # X < 1 > # X < 3 > # X < 3 ) / 1 0 * # 7
RETURN
END
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(9). Test problem #9 used by Eason and Fenton [40]

GENERAL INFORMATION:
3 Variables
9 Functional inequality constraints 
5 Variable bounds
1000 i xx < 8000

X3

STARTING INFORMATION:
X = [5000, 200, 100]
f<3?o> ■= -.8756765

*1 (*o> - 1.9917673

(*o) = 6.4282327

g3 (5fo> = 12.289098

g4 (5fo> = 3937.7109

g5 (*o> = 57.796032

SOLUTION:

100 < x2 < 500
< 114

g,(x ) = 1026.2167 ^6 o
g_(x ) = 5780.1968 7 O

gQ (x ) = 53531.059
o  O

gQ (x ) = 175369.93 y o

x* - [7828.7954, 188.81406, 113.81406] 
f (x*) = -4.2446134 
No constraints active.

COMMENTS: This problem involves the design of a chemical
reactor to maximize profit. The reactor flow rate, x^, 
the reactor temperature, X2 » and the temperature drop in 
the cooling coil are to be selected. The constraints in­
clude an overall energy balance, a stability requirement, 
and a heat exchanger analysis. An additional variable bound 
was added to restrict the temperature drop in the cooling 
coil from approaching an infinite value.
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FUNCTION F<X)
DIMENSION X ( l )
DATA P 2 r C l F r C 2 F r H l t H 2 r £ l r E 2 » C P P » P /  1 0 . » * 0 7 5 ? . 0 2 5 r 8 0 0 0 . , 8 0 0 0 . t 

1 1 0 0 0 . , 1 0 0 0 . , 3 . 6 9 3 8 5 0 3 , 2 0 . /
9 P l - 1 0 0 .

DO 35 1 = 1 , 3
I F < X ( I ) . L T . l . E - 0 6 >  X < I ) = l . E - 0 6  

35  CONTINUE
X K l = P l # E X P < - E l / < 4 6 0 . + X < 2 ) ) )
X K 2 = P 2 * E X P ( - E 2 / ( 4 6 0 . + X < 2 > ) )
V = P *X ( 1 ) / <  XK2* < X < 1 >* C 2 F - P ) )
C 1 = < X (1 ) * C 1 F -P > /< X < 1 > + V * X K 1 >
UT=43 * + ♦0452#X  < 2 )

39  A R G U = < X < 2 ) - X < 3 > - 7 5 . > / < X < 2 > - 1 0 0 . >
IF (A R O U .E O .O )  0 0  TO 48  
XLMTD=.( 2 5 ♦ - X  < 3 > > /ALOG ( ADS ( ARGU) >
H E A T = X < i ) * C P P * < 1 0 0 . - X < 2 > ) + X K l * < X < l > * C l F - P ) * V * H l / < X < l > + V * X K i > + P *  
AREA=HEAT/< UT*XLMTD)
ARE=ABS<AREA)
HEA=ABS(HEAT)
DIA= < 0 / 1 2 . 7 2  > * * ♦ 3 3 3 3 3 3 3 3  
I F ( X < 2 ) . L T . 2 0 0 *  > GO TO 40  
PRESS=23. 6 + 3 . 3 E - 0 6 *  < X ( 2 ) * * 3 )
GO TO 41  

48  X < 2 ) = X < 2 ) * 1 . 0 0 0 1  
GO TO 39

40 PRESS=50.
41 WATE=< . 0 9 0 9 * < D I A * * 3 ) + . 4 8 2 # ( D I A * * 2 )  > * P R E S S + 3 6 . 6 * < D I A * # 2 ) + 1 6 0 . 5 * D  

C 1 = 4 .8 # < W A T E * * .7 8 2 )
I F ( X ( 2 ) . L T . 2 0 0 . ) GO TO 42  
C 2 = < 1 7 . 2 + . 0 1 3 3 * X < 2 ) ) * D I A # * 2  
GO TO 43

42  C 2=0 .
4 3  I F ( P R E S S . L T .1 5 0 *  > GO TO 44

C 3 = 2 7 0 . *  < A R E * * . 5 4 6 ) *  < . 9 6 2 + 1 6 8 . E - 0 9 *  < X < 2 ) # * 3 ) )
GO TO 45

44  C 3 = 2 7 0 . *  < A R E * * . 5 4 6 )
45  C4=>1400. + 1 4 0 . * D I A  

C 5~ S 7 5 . #  < < . 0 5 * 0 ) * * ♦ 3 )
C 6= 81 2 . * ( ( <  6 . 9 5 E - 0 4 + 4 . 5 9 E - 1 1 * ( X ( 2 ) * # 3 ) ) +X < 1 ) ) # * . 4 6 7  >
I F < X < 2 ) . L T . 2 5 0 )  GO TO 46  
0 7 = 1 2 9 1 . *  < < 2 9 8 . * H E A / X < 3 ) ) * * . 4 6 7 )
GO TO 47

46  C 7= 81 2 . *  < < 2 9 8 . * H E A /X ( 3 ) ) * * . 4 6 7 )
47  C0ST=C1+C2+C3+C4+C5+C6+C7  

UEST=5.*C0ST
C 0 = 2 2 0 0 0 . + . 1 8 *V E S T + 3 . 1 0 * 0 + 6 1 . 1 * ( <  6 . 9 5 E - 0 4 + 4 . 5 9 E - 1 1 * ( X ( 2 ) * * 3 ) )

1 * X ( 1 ) >  + * 0 0 1 15#HEAT+6. 92#HEAT+574 . * X (1> *<  C 1 F -C 1 ) + 1 1 4 8 0 0 .
F= < 6 8 8 0 0 0 . -C O ) / <  2 . #VEST) *  < - 1 . E - 0 3 )
RETURN
END
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C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #9
2 0 8

SUBROUTINE CONST < X * N P H I fP H I >
DIMENSION X ( l ) f P H K l )
DATA P 2 f C l F * C 2 F r H l » H 2 f E i * E 2 » C P P r P /  1 0 * » . 0 7 5 * * 0 2 5 * 8 0 0 0 * f 8 0 0 0 * »

1 1 0 0 0  * * 1 0 0 0 . f 3 . 6 9 3 8 5 0 3 *  2 0  ♦ /
9  P l “ l 0 O .

DO 3 7  1 = 1 * 3
I F ( X ( I ) * L T * 1 * E - 0 6 )  X ( I ) “ 1 * E - 0 6  

3 7  CONTINUE
X K l = P l # E X P ( - E l / ( 4 6 0 * + X < 2 > ) )
XK2“ P 2 # E X P <H E 2 / < 4 6 0  * +X < 2 ) >  >
V=P#X < 1 ) / <  XK2# < X < 1 ) # C 2 F - P ) )
C1“ < X < 1 > * C 1 F -P > / (X < 1 > + V # X K 1 >
U T « 4 3 . + . 0 4 5 2 * X < 2 )

3 6  A R G U * < X ( 2 ) ” X < 3 ) - 7 5 * > / < X ( 2 > - 1 0 0 . )
I F ( ARGU * EG♦ 0 ♦ )  GO TO 4 9
XLMTD=< 2 5 . - X  < 3 ) ) /A L O G ( ABS < ARGU) )
HEAT=X < 1 ) #CPP* < 1 0 0 . - X ( 2  > ) +XK1* < X < 1 ) #C 1F - P ) * V * H 1 / ( X < 1 ) +V#XK1 ) +P#H2  
AREA=HEAT/( UT#XLMTD)
D I A - ( 0 / 1 2 * 7 2 ) # # * 3 3 3 3 3 3 3 3  
I F < X ( 2 ) * L T  * 2 0 0 * )  GO TO 44  
PR ESS=23 . 6 + 3 *  3 E - 0 6 # ( X ( 2  > # # 3  >
GO TO 4 5  

4 9  X < 2 ) “ X ( 2 ) # 1 ♦ 0 0 0 1  
GO TO 3 6

4 4  PRESS=»50 •
4 5  P H I < 1 ) = D I A - 1 *2 5  

P H I < 2 >=9 » 6 7 —DIA  
P H I  <3)=AREA-“5 0 *
P H I < 4 ) = 4 0 0 0  * -AREA 
A 11 = X K 1+ X < 1 ) / V  
A 1 2 “ XK2
A 1 3 = ( X ( 1 ) #C 1 F -P R E S S ) #XK1# E 1 / ( ( X < 1 ) + V#XK1 ) # ( <  X ( 2 ) + 4 6 0 . ) # * 2 ) )  

1 + P R E S S # E 2 / ( V # ( ( X ( 2 ) + 4 6 0 * ) * # 2 ) >
A 2 2 SSXK2+X ( 1 )  /  V
A 23 “ P R E S S *E 2 /< V #<  < X < 2 ) + 4 6 0 * ) # # 2 > )
A 3 1 “ -H 1 # X K 1 /C P P
A 3 2 = “ H2#XK2/CPP
A 3 3 - X ( 1 > /V + U T # A R E A /< 0 # C P P )“ <X<1 > # C lF “ P R E S S ) # X K l # E l # H l / ( < X < 1 ) + V #  

1 X K 1 ) # C P P # (< X ( 2 ) + 4 6 0 . ) # # 2 ) ) - P R E S S * E 2 # H 2 / ( V#CPP#(< X ( 2 ) + 4 6 0 . ) # # 2 ) )  
TEMP1=A1 1 + A22+A33  
P H I ( 5 ) = T E M P 1
TEM P2=A 11#A 22+A 22#A 33+A 33#A 11“ A 1 3 # A 3 1 -A 2 3 # A 3 2  
P H I< 6 )« T E M P 2
T E M P 3 = A 1 1 # A 2 2 # A 3 3 + A 1 2 *A 2 3 # A 3 1 -A 1 3 # A 3 1 # A 2 2 -A 2 3 *A 3 2 # A 1 1
P H I < 7 ) “ TEMP3
P H I < 8 ) » TEMPI#TEMP2-TEMP3
P H I ( 9 ) «HEAT
RETURN
END
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(10). Test problem #10 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables
4 Variable bounds 1 5  x^ £ 3 j = 1,2

STARTING INFORMATION:
XQ = [.5, .5]
f(x ) = 2563.325 o

SOLUTION:
x* = [1.74347038, 2.02963554] 
f(x*) = 1.744152006

COMMENTS: This problem concerns the allocation of gear
ratios in a triple reduction spur-gear train to achieve 
an overall reduction ratio of 10 with minimum gear train 
inertia.
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FUNCTION F(X)
DIMENSION X(l)
F = < 1 G . 0 + 1 . 0 * < 1 . 0 + X ( 1 > * X < 1 >  + < 1 .0 + X < 2 > * X < 2 > > /< X < 1 ) * X < 1 >  > + 

1 < X U ) * X < 1 > * X < 2 ) * X < 2 > + 1 0 0 . > / < X < l > * X < 2 > > * * 4 > + 1 0 0 . / 1 0 0 . > / 1 0 ,  
RETURN 
END
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(11). Test problem #11 used by Eason and Fenton [40].

GENERAL INFORMATION:
2 Variables
2 Functional inequality constraints 
4 Variable bounds 0 * 5 1.5 j = 1,2

STARTING INFORMATION:
x = [.75, .75]0
f(x ) = 2.17360794 o
g. (x ) = 15.56480301 o
g2 (xo) = 44.4351970

SOLUTION:
x* = [.911398818, .02927999] 
f (x*) = 1.1495014726 
Constraint #1 is active.

COMMENTS: This problem involves the design of a cam of
minimum plate area. It involves specification of the offset 
between the cam center and the knife-edge follower in the 
initial position. A logarithmic follower function is 
required, and the pressure angle between the cam and 
the follower is limited to ±30° during a specified portion 
of one revolution.
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #11

FUNCTION F<X)
DIMENSION X<1>
CGMMON/A1/ PBIG  

11 C 0 N ® 1 8 0 . / 3 . 1 4 1 5 9 2 7  
P B I G « - 3 6 0 .
DTR«1. /CON  
T R « 6 0 . /C 0 N  
F » 0 .
DO 49  I « l f l O O  
G*ALOG<TR)
D Y ® 1 . /T R
X X X ® ( G + X < 2 ) ) # S IN ( T R ) + X ( 1 )#COS(TR)  
YYY®(G+X<2)>#CQS< T R ) - X ( 1 >#SIN<TR)  
RR«XXX*XXX+YYY*YYY  
F*F + .5 # R R *D T R
PANGLE»CON*ATAN < ABS( ( D Y -X 11 ) ) / <  G+X < 2 ) ) ) )  
I F ( PANGLE # GT * P B IG ) PBIG«PANGLE 

4 9  TR»TR+DTR 
RETURN 
END

SUBROUTINE CONST<XrNPHIr P H I )
DIMENSION X < l ) r P H I ( l )
COMMON/A1/ PBIG 
CON®1 8 0 » / 3 . 1415 9 2 7  
P B IG = - 3 6 0 *
DTR®1./C0N  
T R « 6 0 . /C 0 N  
DO 49 I ® 1 t 100  
G=ALOG<TR)
D Y = 1 * /T R
PANGLE®CON*ATAN<ABS< <D Y-X<1) > /< G + X < 2 ) ) ) )  
I F ( PANGLE.GT.PBIG) PBIG®PANGLE 

4 9  TR=TR+DTR 
11 P H I < 1 ) ® 3 0 . - P B I G  

P H I< 2 ) « P B IG + 3 0 .
RETURN
END
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(12). Test problem #12 used by Eason and Fenton [40].

GENERAL INFORMATION:
4 Variables 
8 Variable bounds

STARTING INFORMATION:
xQ = [136, 0, 74.8, 75.5]
f(x ) = .36733873 o

SOLUTION:
x* - [136.00762, .031371415,73.594390, 72.187426] 
f (x*) = .35845660

COMMENTS: This problem involves guiding a light weight
assembly-line tool along a specified path. The crank is 
rotated in 10° intervals at a constant angular velocity 
and the objective function is the sum of the squared 
deviations of the generated points to the desired ones, 
and a function of the link lengths.

0 < xx < 150 
0 < x2 < 50

0 < x3 < 100 
0 < x4 < 100
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F U N C T I O N  L I S T I N G  F O R  P R O B L E M  # 1 2
2 1 4

FUNCTION F ( X )
D IM E N S IO N  X < 1 )  f X P T < 3 6 )  pYPT( 3 6 )
DATA XPT/113# p110#1p106 »2p101# 3 p 9 5 *  4 f 8 8 # 8 f 8 1 # 6 p 7 4  * r 66*1p 5 8 * 4 p 5 1 * r 

144#3r38#7p34.5F32#4F32#9p36#4p42#8F50.9p59. f 6 5 * 8 p 7 1 # 5 f 7 6 . 5 p 8 1 . 1 f 
285 » 6 p 9 0 # 2 p 9 4  # 6 p 9 8 * 9 p 103# f 1 0 6 # 7 p 1 0 9 * 9 p 112 * 5 p 114*4 p 1 1 5 # 5 p115*7 f 114* 
39/f YPT/40♦2 f 46»8 f53 # 3 p 59 # 4 f 65♦f69.9 f 7 3 # 9 p 7 6 # 9 p 7 8 * 9 f 7 9 . 8 f 7 9 * 7 f 7 8 . 5 p  
4 7 6 . 5 p 7 3 * 6 f 7 0 . 2 p 6 6 . p 6 0 * 9 f 5 4 # 3 p 4 5 * 8 f 3 6 * 1 f 2 6 * 5 p 1 8 * 1 p 1 1 * 4 p 6 # 2 p 2 * 6 p  
5 # 3 f - # 7 p “ # 6 p # 7 p 3 # 1 f 6 # 4 p 1 0 # 5 p 1 5 * 5 p 2 1 * f 2 7 * 1 f 3 3 # 6 /

DATA POfGOfROfS 0 / 9 0 *fO#fO*fO*/
1 2  DALPHA<°3» 1 4 1 5 2 7 / 1 8 #

SUM»0»
P1®X<1>
Q1=X<2>
R 1=X<3>
S 1 =X <4 >
DO 5 4  I ® 2 p3 6  
ALPHA=DALPHA# ( 1 - 1  )
CA=COS(ALPHA)
S A = S IN < A L P H A )
P I « P 1 # C A - Q 1 * S A + F 0 * < i . - C A > + G 0 # S A  
Q I® P 1 * S A + Q 1 # C A + Q 0 * < 1 # - C A ) - P O * S A
A ® R O # S l - S O * R l - Q i * R O + P l * S O + P I * Q l - P l # Q I + Q I # R l - P I * S l
B = ” R O * R l - S O * S l + P l * R O + a i * S O - P l * P I “ Q l # Q I + P I * R l + Q I * S l
C = - R 1 * R 0 - S 1 * S 0 + P I * R 0 + G I * S 0 + P 1 * R 1 + Q 1 * 5 1 - < P 1 * P 1 + Q 1 * Q 1 + P I * P I +

1 G I & Q I ) / 2 .
AABB=A*A+B#B
I F ( A A B B . L T • 1 * E - 3 0 )  GO TO 5 0  
T E S T » C /S G R T < AABB >
I F ( ABS< T E S T ) #GT #1# > GO TO 51  
J = 1  .

5 2  P H * A S I N ( T E S T > - A T A N ( B / A )
5 5  S P « S IN ( P H >

CP=COS(PH>
R I = R 1 # C P —S 1 # S P + P I —P 1 # C P + Q 1 *S P
S I = R 1 * S P + S 1 * C P + G I - P 1 * S P - G 1 # C P
T E S T 1 « < R 1 - R 0 > * # 2 + < S 1 - S 0 > * # 2
I F ( T E S T 1 * L T • 1 #E—1 0 )  T E S T 1 ® 1 . E - 1 0
I F < A B S < < T E S T 1 - < R I - R 0 ) # # 2 - < S I - S 0 > * # 2 > / T E S T 1 > # L T . 0 # 0 0 1 >  GO TO 5 3
I F ( J . E Q # 2 )  GO TO 5 1
T E S T » - T E S T

Is -r i

GO TO 5 2
5 0  P H ® -A TA N <B /A >

GO TO 5 5
5 1  F ® 1 # E 2 0  

RETURN
5 3  CALCX®XPT < 1 ) * C P - Y P T < 1 ) # S P + P I - P 1 # C P + Q 1 * S P  

C A L C Y « X P T < 1 > # S P + Y P T < 1 > * C P + Q I - P 1 * S P - G 1 # C P
5 4  SUM<=SUM+ <C A L C X -X P T < I ) ) # * 2 +  <C A L C Y -Y P T ( I )  > * * 2  

SQL® < R l - R O ) * * 2 +  < S l - S O ) # * 2 +  < R l - P l ) * * 2 +  < S l - Q l ) * * 2
1 + ( P 1 - P 0 ) # # 2 + < Q 1 - Q 0 ) * * 2  

F = S U M /1 0 0 *  + S Q L / 6 2 5 0 0 .
RETURN
END
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(13). Test problem #13 used by Eason and Fenton [40].

GENERAL INFORMATION:
5 Variables
4 Functional inequality constraints
3 Variable bounds
15 5 x1 < 20 x5 - 2

STARTING INFORMATION:
xQ = [15, 9.05, 6.14, 4.55, 3.61]
f(x ) = .2802 o
g;L(xo) =5.95 93 <x0) = 1-59
g2 (xo) - 2.91 ^4 (x0) = .94

SOLUTION:
x* = [15.2632, 8.63583,6.34419, 5.12674,4.36837] 
f(x*) = .2679 
No constraints active.

COMMENTS: This problem concerns modifying the gear ratios
for a five speed automotive transmission in order to 
accelerate from rest to 100 MPH in minimum time.
The problem was modified in that the interpolation of 
torque values for engine speed was replaced by a series 
of cubic least squared error fits. This change was made 
to avoid the time consuming interpolation.
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F U N C TI O N  LI S T IN G  FOR P R O B L E M  #13
216

FUNCTION F<X)
DIMENSION X (1> vRPM< 1 )  * TORQUE( 1 )
DATA RADrCON1»C0N2rRPMINrRPMAX»EI»V I f D T t VMAX»VO fTSHIFTfTM A X/

1 1 * 0 8 5  f 1 ♦ 4 6 6 6 6 7 f 12 * 9 0 8 4 2 16 0 0 . f 5 7 0 0 . f * 6 0 0 f 9 8 . t ♦ 0 1 1 1 0 0 .
2 * 5 . * « 2 5 f 1 0 0 * /

13 I T * 0
ACC=0.0
v«vo
1=1

3 0 2  FORCE* ♦ 0 2 9 3 # V * * 2 + 3 1  • 2 
3Q1 R P M ( 1 ) * V * C 0 N 2 * ( X < I ) >

IF<R P M (1> .LT*R P M IN >  GO TO 300  
IF < R P M (1 ) *G T♦RPMAX) GO TO 305  
IF (R P M (1 ) .G E .R P M A X )  GO TO 305
IF (R P M ( 1 ) . GE. 6 0 0 . . AND. RPM< 1 ) . L E . 1 9 0 0 . )  TORQUE< 1 > =

1 . 0 0 0 0 0 0 0 3 8 4 6 1 5 4 JURPM( 1 ) * * 3 - . 0 0 02 1 0 8 9 7 4 3 5 9 *R P M ( 1 ) # * 2 +
2 * 4 2 4 5 5 1 2 8 2 0 5 1 3 3 * R P M (1 ) - 1 8 7 * 1 1 5 3 8 4 6 1 5 4 0 2 9 5

I F ( RPM( 1 ) *  GE » 1 9 0 0 » * AND»RPM( 1 ) *  LE * 3 0 0 0 ♦ )  TO R Q U E ( l ) *
1 - . 0 0 0 0 0 0 0 0 4 9 2 4 2 4 * R P M < 1 ) * # 3 + . 0 0 0 0 1 867424242*R PM <1 ) * * 2 +
2 .0 1 2 2 9 5 4 5 4 5 4 5 4 7 # R P M < 1 ) + 6 4 . 9 9 9 9 9 9 9 9 9 9 8 6  

I F  < RPM( 1 ) . GE. 3 0 0 0 . . AND. RPM < 1 ) . L E . 4 5 0 0  * )  TORQUE < 1 ) -
1 - . 0 0 0 0 0 0 0 0 0 2 6 6 6 7 * R P M ( 1 ) # * 3 + ♦ 000003KRPM( 1 ) * * 2 -
2 « 0 1 2 6 3 3 33 3 3 3 33 6 *R P M < 1 > + 1 5 5 .1 0 0 0 0 0 0 0 0 0 2 9 4 7

I F  < RPM < 1 ) . GE. 4 5 0 0 . . AND * RPM( 1 ) . L T . 5 6 0 0 . )  TORQUE < 1 > =
1 - . 0 0 0 0 0 0 0 0 6 6 4 1 4 1 #RPM( 1 ) * * 3 + ♦ 0 0 00 8 3 3 76 2 6 2 63 *R P M < 1 > * * 2 -
2 ♦3 4 35 1 8 6 86 8 8 1 29 *R P M  < 1 )+ 5 9 7 . 3 6 3 6 3 6 3 8 4 7 1 4 5

I F <RPM( 1 ) * G E » 5 6 0 0 * »AND*RPM< 1 ) * L E » 6 0 0 0 * ) TORQUE<1>»
1 - ♦ 0 0 00 0 0 0 2 5 3 9 6 8 3 *R P M  < 1 ) # * 3 + ♦ 0 0 0 3 8 1 5 8 7 3 0 1 57#RPM(1> # * 2
2 - 1 . 9 2 23 4 9 2 0 6 2 3 4 8 *R P M < 1 )+ 3 3 8 0  * 6 6 6 6 6 6 4 5 7 1 5 3 0 4  

ACCO*ACC
ACC=RAD* < X ( I ) *TORQUE( 1 ) -FORCE*RAD) / <  E I * X ( I ) * * 2 + V I )
I T = I T + 1
T * D T * I T
V * V + ( ACCO+ACC) / 2  * *DT/C0N1  
I F ( T .G T .T M A X )  GO TO 311  
IF<V*GE*VMAX) GO TO 311 
GO TO 30 2  

3 0 0  F=TMAX 
RETURN

3 0 5  1 *1 + 1
I F ( T * E Q . O . )  GO TO 301  
TT»T+TSHIFT

3 0 6  A C C = -F 0 R C E *R A D **2 /V I  
I T = I T + 1
T * D T + IT
V*V+ACC*DT/C0N1  
I F < T * L T * T T >  GO TO 307  
GO TO 30 2

3 0 7  FORCE*«0 2 9 3 * V * V + 3 1 • 2  
GO TO 30 6

311 F - T / 1 0 0 .
RETURN
END
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C O N S T R A I N T  L I S T IN G  FOR P R O B L E M  #13

SUBROUTINE CONST<X»NPHIfPHI) 
DIMENSION X<1> f P H I ( 1 )  
P H I< 1 > * X < 1 ) - X < 2 >  
P H I< 2 > « X < 2 ) -X < 3 >
P H I ( 3 ) ®X < 3 ) - X  < 4 > 
P H I ( 4 ) * X ( 4 ) - X ( S )
RETURN
END
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(14). Test problem #2 used by Colville [27].

GENERAL INFORMATION:
15 Variables 
5 Functional inequality constraints 

10 Variable bounds j =1,2,3, ...,

STARTING INFORMATION:
x = .0001 j =1,2, ...,15, j ± 7; x^ = 60 °j o7

fix) = -2400.011 o
g (x ) = 45.00605
1 g-(x ) = 42.00230

g_(x ) = 33.00380 4 °
g_(x ) = 48.00408

g-(x ) = 23.99590 5 °3 O

SOLUTION:
x* = [0, 0, 5.1736360, 0, 3.0612393, 11.8389158, 0, 0, 

.10376918, 0, .3000238, .33343802, .40002035, 

.4282753906, .223971045]
£(x*) = 32.3486790
Constraints #1, 2, 3, 4 and 5 are active.

COMMENTS: This problem is the dual to problem #1 of the
comparative study.
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F U N C T I O N  L I S T I N G  FOR P R O B L E M  #14
219

FUNCTION F ( X )
DIMENSION X ( l )
COMMON/COF/A<10f5>fB<10>fC<5f5>fD<5>fE<5)
DATA ( C < I ) f 1 * 1 r 2 5 )  / 3 0 * f-20,f-10*f32.f - 1 0 * r - 2 0 . f39.f ~ 6 . f  

1—3 1 ♦ f3 2 » »“ 1 0 * p ~ 6 * f  1 0 * t- 6 » > - 1 0 * f3 2 * f“ 31 * *“ 6 »  f3 9 * f“ 2 0 «r“ 1 0 * f 
2 3 2 *  r - 1 0 *  r —2 0 *  f30»/

DATA <B<I>fI=«1f10>/“40.f“2*f“ .25f“4*f“4*f“1.f-40*f“60*f5*f1./ 
DATA ( D ( I ) fI « 1 f5) /4*f8.fIO.»6*f2./
U 1 = 0 .0
U2=0»0
U 3 = 0 * 0
DO 100 1 = 1 f 10 
U 1 - B ( I ) * X ( I ) + U 1

100 CONTINUE
DO 101 J “ 1 f 5 
DO 101 1 = 1 f5
U2=C<I f J ) * X  < 10 + 1 ) * X ( 1 0 + J ) +U2

101 CONTINUE
DO 102 J = 1 f5
U3=D( J ) * X  <10+J > * * 3 + U 3

102  CONTINUE
F « “ < U1“ U2—2 • * U 3 )
RETURN
END
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C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #14
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SUBROUTINE CONST(XfNCONSfCON)
DIMENSION X ( 1 ) fC0N<1>
COMMON/COF/ A < 1 0 f5 > f B < 1 0 ) fC <5 f5 > fD <5 > fE<5>
DATA (A<I>fI*1f50> /-16. fO. f-3.5fO. fO. f2. f-1 . t-1 * r 1. f 1. »

1 2 . r —2 . r D i f - 2 . f - 9 . r O *  f - 1 » f —2 * f 2 . f 1 . f 0 * f 0 » f 2 « f 0 » r ~ 2 ♦ f —4 . » - l * i
2 - 3 ♦ » 3 * r l t f 1 » f 4 . f 0 ♦ f —4 * f 1 * f 0 * f —1 * * —2 * f 4 ♦ f 1 * f 0 . f2 » f 0 » f — 1 . r
3 —2 * 8 f0*  f - 1 . f —1 * f5* f 1 ♦ /

DATA < E < I ) f I » 1 » 5 ) / - 1 5 .  f - 2 7  » f- 3 6 ♦ f - 1 8 * f- 1 2 . /
DATA < D ( I > f I * 1 f5 > / 4 . f8 . f 1 0 .  f<*»f2 . /
DATA ( C ( I ) f 1 * 1 f 2 5 )  / 3 0 . f - 2 0 . f - 1 0 . f 3 2 . f - 1 0 . f - 2 0 . f 3 9 . f - 6 . f  

1—31» f3 2 . f —1 0 » f— 6 . f I O *  f —6 ♦ f—1 0 ♦ f3 2 . f —3 1 . f —6 ♦ f3 9 *  f— 2 0 *  f —1 0 . t 
2 3 2 . f - 1 0 . f - 2 0 . f 3 0 . /

DO 100 J * 1 f5 
C l - 0 , 0
DO 101 1 * 1 f5 
C 1 * C ( I fJ ) * X < 1 0 + I ) + C 1

101 CONTINUE 
C 2 * 0 . 0
DO 102 1 * 1 f IO  
C 2 = A ( I fJ ) # X ( X ) + C 2

102 CONTINUE 
C 0 N < J ) = E < J > + 2 . * C 1 + 3 . * D < J > # X < 1 0 + J > * # 2 - C 2

100 CONTINUE 
RETURN 
END
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(15). Test problem #7 used by Colville (27].

GENERAL INFORMATION:
16 Variables 
8 Equality constraints 
32 Variable bounds 0 £ £ 5 j = 1,2,3, ...,16

STARTING INFORMATION:
x q = 0 j =1,2,3, ...,16

f(xQ) =46.0
h.(x ) = -2.5 h_(x ) = -1.31 o 5 o
h-(x ) = -1.1 hc (x) = -2.1
i O  b O

h-(x ) =3.1 h,(x ) = -2.3
3  0  7  O

h4 (x q) = 3.5 h8*xô  ~ 1,5

SOLUTION:
x* = [.03981344, .79197966, .2029019, .84431475,

1.26985898, .934787236, 1.68198142, .155235257, 
1.5678912575, 0, 0, 0, .66016359, 0, .674293038, 0 ]

f(x*) = 244.89969778

»
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F U N C T I O N  L I S T I N G  F O R  P R O B L E M  # 1 5
2 2 2

FUNCTION F ( X )  
DIMENSION X ( l >  
DATA < A < I ) f I = 1

A<16f16> 
2 5 6 ) / l . 0♦fO. fO* fO.rO* fO* fO.fO. rO»fO. r

O* fO* fO. »0<10* 0. 0* fO. 0* 0. 1. 0. fO. 0. 0. 0. 0. 0. 0. 0 . F
20» 1. 1. fO. 0. 0. 0* 0. fO. 0. 0. 0. 0. 0. 0. 0. F
31. 0. 0* F 1 • 0. 0* 0. 0. fO. 0* 0* 0. 0. 0* 0. O . F
40. 0. 0. fO. 1. 0. 0. 0. fO. 0. 0. 0. 0. 0. 0. 0. F
50* 0. 0. F 0 . 1. 1. 0. 0* fO. 0. 0. 0. 0. 0. 0. O . F
61. 1. 1. f 1 » 0. 0. 1. 0. fO. 0. 0. 0. 0. 0. 0. O . F
71. 0. 0. fO. 0. 1. 0. 1. fO. 0. 0. 0. 0. 0. 0. O . F
80. 0. 1* fO* 0. 0. 0. 0. F 1 * 0. 0. 0. 0* 0. 0. 0. F
90. 1. 1* fO. 1. 0. 0. 1. fO. 1. 0. 0. 0* 0. 0. O . F
90. 0. 0. F 1 * 0* 0. 1. 0* fO. 0. 1. 0. 0. 0. 0. O . F
10. 0. 0. fO* 1. 0. 0. 0. fit 0* 0. 1. 0. 0. 0. 0. F
20. 0. 0. fO. 0* 0. 1. 0. fO. 0. 1 ♦ 0. 1. 0. 0. 0. F
30. 0. 1. F 0 . 0. 0. 0. 0. fO. 1. 0* 1. 1. 1. 0. 0. F
40. 0. 0. F 1 » 0. 1. 0. 1. fO* 0* 0. 0. 0. 0. 1 • 0* F
51. 0. 0* fO. 1. 0. 0* 0. F 1 . 0. 0. 0. 0. 0. 0. 1./

F = 0  • 0
DO 1 0 0  1 = 1 f 16  
F 1 = X ( I ) * X < I > + X < I ) + 1 .  
DO 1 0 0  J = 1 v 16  
F 2 = X < J ) # X < J ) + X < J > + 1 .  
F = A ( I f J ) * F 1 * F 2 + F  

1 0 0  CONTINUE  
RETURN 
END

f O .  t
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C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #15
223

SUBROUTINE EQUAL <X * CONt NEQUS)
DIMENSION X ( 1 ) f C O N ( l ) r B ( 8 f l 6 ) r C ( 8 )

DATA < B < I > p I = l r l 2 B ) / * 2 2 r - 1 . 4 6 f l * 2 9 f - l * l r 0 . r O *  p l * 1 2 r 0 . f  
1 *2p0  * p - » 8 9 p - 1 * 0 6 p 0 * f - 1 . 72p0« f . 45p ♦1 9 f - 1 * 3 0 p 0 . t . 9 5 f 0 . f - * 3 3 f  
2 0 *  f * 2 £ f  * 2 5 p 1 * 8 2 f 0 *  f - * 5 4 p - l * 4 3 f 0 * f  * 3 1 r - 1 ♦ 1 f * 1 5 f - 1 . I 5 f  
3 - 1 * 16p0*  p1 * 5 1 f 1 * 6 2 10 * p« 58  p * l i p 0 * f - » 9 6 p - l *  7 8 r * 5 9 1 i  * 2 4 r 0 * r 0*  r 
4 * 1 2 f  « 8 f 0 * f - * 4 1 f - * 3 3 t * 2 1 f l * 1 2 f - 1 . 0 3 f * 1 3 f 0 * f - . 4 9 f 0 . f - * 4 3 f - . 2 ^ f  
5 0 • f » l r l * r O » f O * f O * r O * r O * f  — ♦36 rO* f 0 ♦ r l • rO* rO* rO* rO* f 0 » r 0 ♦ r 
6 0 *  f O » f l » r O » r O » r O * f O * r O * f O * f O * p O * f l * r O » f O * f O » r O » f  
7 0 *  » 0 * p 0 » f 0 » f l « f 0 » p 0 * p 0 * p 0 « f 0 * r 0 * f 0 * f 0 * f l * r 0 * f 0 * f  
8 0  » f O * r O * f O * p O * f O * f l * f O * f O * f O * f O » r O * f O * f O * f O * f l * /

DATA <C<I) r 1 = 1 ?8> / 2 * 5 f 1 . 1 f - 3 . 1 p- 3 . 5 p1 * 3 f 2 . 1 f 2 . 3 r - i . 5 /

DO 100 1 = 1 r 8 
C 0 N < I ) » 0 * 0  
DO 101 J “ 1 f 16  
C O N ( I ) « B ( I r J > * X < J ) + C O N ( I )

101 CONTINUE
CON <I ) “ CON <I ) - C ( I )

100 CONTINUE 
RETURN 
END
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(16). Test problem #8 used by Colville [27].

GENERAL INFORMATION:
3 Variables 

14 Functional inequality constraints
6 Variable bounds

0 £ x2 < 16,000 ;
0 < x1 < 2000 ;

0 < x3 < 120

STARTING INFORMATION:
XQ = [1745, 12000, 110] 
f (xo) = -868.645762
gx (xQ) = .390342104 =
g2 (x0) = .013043417 99(*o} =
g3 (xo> =* .049385745 g1Q (xq)
g4 (xo) = .040883997 g n ( xq)
g5(xQ) = .037798404 ^12 (5?o)
96 (*o} = • 023471730
g7 (xQ) = 1.66932439 9;l4

SOLUTION:
x* = [1728.37078, 16000,98.1323813] 
f(x*) = -1162.0363352 
Constraints #2 is active.

.332668903 
355.105637 

= .109735908 
= .002141772 
= .103021254 
= 3048.28948 
= 1973.91317

COMMENTS: This is a process optimization problem developed
by Colville. The constraints were scaled to allow for better 
convergence to the solution.
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F U N C T I O N  A N D  A U X I L I A R Y  S U B R O U T I N EL I S T I N G  FOR P R O B L E M  #16
22 5

FUNCTION F ( X )
DIMENSION X ( l ) * Y < 8 )
CALL SUPPLE(XrY>
F « 0 »0 6 3 * Y  < 2 )  #Y < 5 )  - 5  ♦ 04#X < 1 )  -*3 ♦ 36#  Y <3 ) - 0  * 035#X < 2 > - 1 0 * # X < 3 )
RETURN
END

SUBROUTINE SUPPLE(XfY)
DIMENSION X ( l ) r Y ( l )
Y < 2 ) * i . A # X ( l >

10  Y ( 3 ) = 1 ♦ 2 2 # Y ( 2 ) - X  <1)
Y ( 6 ) ~ < X ( 2 ) + Y ( 3 ) ) / X ( 1 )
Y 2 C A L C - X < 1 )# < 1 1 2 * + 1 3 * 1 6 7 # Y < 6 ) - 0 ♦ 6 6 6 7 # Y ( 6 ) * # 2 ) / 1 0 0  *
I F ( ADS < Y2CALC-Y( 2 ) ) - 0 . 0 0 1 )  3 0 t 30  r 20  

2 0  Y<2)*Y2CALC  
GO TO 10  

3 0  CONTINUE 
Y < 4 > - 9 3 . 0

10 0  Y < 5 > » 8 6 . 3 5 + 1 . 0 9 8 # Y < 6 > - 0 . 0 3 8 * Y < 6 > * * 2 + 0 . 3 2 5 * < Y < 4 ) - 8 9 . )  
Y ( 8 ) = - 1 3 3  »+3* # Y <5 )
Y ( 7 ) = 3 5  * 8 2 ~ • 2 2 2 # Y ( 8 )
Y 4 C A L C -9 8 0 0 0 • # X ( 3 ) / < Y ( 2 ) # Y < 7 ) + X < 3 ) # 1 0 0 0  * )
I F  < ABS( Y4CALC-Y< 4 > > - 0 . 0 0 0 1 )  3 0 0 r 3 0 0 r 20 0  

2 0 0  Y (4 )»Y4CALC  
GO TO 100  

3 0 0  CONTINUE 
RETURN 
END
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C O N S T R A I N T  L IST ING FOR P R O B L E M  #16

SUBROUTINE CONST( X v NCONSt CON) 
DIMENSION X <1> v C O N < l ) r Y < 8 )  
CALL SUPPLE<XrY)
CON <1 > <* < 5 0 0 0  » ~Y < 2 > ) / 5 0 0 0 .
CON < 2 ) = ( 2 0 0 0 ♦ - Y < 3 ) > / 2 0 0 0 .  
C 0 N < 3 )SS< Y < 4 ) - 8 5 »  ) / 8 5 *  
C 0 N < 4 ) = > ( 9 3 . - Y < 4 ) > / 9 3 .  
C 0 N < 5 > = < Y < 5 ) - 9 0 . ) / 9 0 .
CON< 6 ) » < 9 5 ♦ - Y  < 5 ) ) / 9 5 » 
C 0 N < 7 ) » < Y < 6 > - 3 . > / 3 .  
C 0 N < 8 ) = < 1 2 . - Y < 6 > > / 1 2 .  
C 0 N ( 9 ) « ( Y < 7 ) - 0 * 0 1 ) / 0 . 0 1  
CON < 1 0 ) ° ( 4 * - Y < 7 ) ) / A • 
C 0 N < 1 1 ) = ( Y < 8 > “ 1 4 5 . ) / 1 4 5 *  
C Q N < 1 2 ) * < 1 6 2 * - Y < 8 ) ) / 1 6 2 »  
C 0 N U 3 > * Y < 2 >
C 0 N ( 1 4 ) * Y < 3 )
RETURN
END
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(17). Test problem #1 used by Dembo [46].

GENERAL INFORMATION:
12 Variables 
3 Functional inequality constraints 

24 Variable bounds . 1 £, x^ £ 100 j =1,2,3, 12

STARTING INFORMATION:
xQ =4.0 j =1,2,3,...,12

j
f(xQ) = .227682649 

g1 (x ) = .199810679
g,(x ) = -.754318463 

g2 (xQ) = -.757076016 J °

SOLUTION:
x* = [2.6631947068, 4.517277762,7.133802907, 2.237268448, 

4.07840382657, 1.31827569,4.125187034, 2.856195978, 
1.6765929748, 2.1789111052,5.12343515, 6.659338016]

f(x*) = 3.16859000
Constraints #1, 2, and 3 are active.

COMMENTS: The problems involves a multiphase chemical
equilibrium calculation. The scaled version of the problem 
was used.
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #17

FUNCTION F<X)
DIMENSION X<1)
DIMENSION A<11>
DATA A / - .0 0 1 3 3 1 7 2  p- * 0 0 2 2 7 0 9 2 7  f - . 0 0 2 4 8 5 4 6  f - 4 ♦ 4 7 1- 4 . 6 7 1 9 7 3  » 

1 - . 0 0 8 1 4 0 1- . 0 0 8 0 9 2  » - . 0 0 5 r - . 0 0 0 9 0 9 r - . 0 0 0 8 8 f - . 0 0 1 1 9 /  
F * 1 . 0 0 E + 0 5  
DO 10 I » l r l l  
TEMP=X<I)
I F < X < I ) » L T * 1 ♦ O E - I S )  TEM P=1.0E -15  

10 F*F#TEM P#*A<I>
RETURN
END

SUBROUTINE CONST<XfN P H IfPHI>
DIMENSION X ( 1 ) f P H I ( 1 ) f C < 3 0 >
DATA C / 5 .3 6 7 3 7 3 E - 0 2 r 2 .18 6 3 7 4 6 E - 0 2  f 9 ♦7 7 3 3 5 3 3 E - 0 2  f 6 * 6 9 4 0 8 0 3 E - 0 3  f

1 1 .0 E - 0 6 11 ♦0 E - 0 5 f 1 ♦0 E - 0 6 f 1 .0 E - 1 0 11 .0 E - 0 8  f 1 *0 E - 0 2  f 1 .0 E - 0 4  f
2 1 ♦ 0 8 9 8 6 4 5 E - 0 1 f 1 * 6 1 0 8 0 5 2 E -0 4  f 1 . O E-23  f 1 . 9 3 0 4 5 4 1 E - 0 6  f 1 . 0 E - 0 3  f
3 1 ♦ 0 E - 0 6  f 1 . 0 E - 0 5  f 1 . OE-OA f 1 . 0 E - 0 9  f 1 ♦ 0 E - 0 9  * 1 . 0 E - 0 3  f 1 . 0 E - 0 3  f
4 1 . 0 8 9 8 6 4 5 E - 0 1 f 1 . 6 1 0 8 0 5 2 E - 0 5  f 1 . OE-23 f 1» 9 3 0 4 5 4 1 E - 0 8  f 1 * 0 E - 0 5 f
5 1 » 1 1 8 4 0 5 9 E - 0 4 f 1 * 0 E - 0 4 /

PHI (1  >=*1 »0-C< 1 ) # X < 1 ) -C < 2 )4 X < 2 ) -C (3 )J |c X < 3 )—C ( 4 ) # X ( 4 ) # X < 5 )  
P H K 2 ) ® 1 . 0 - C < 5 ) # X < 1 ) - C < 6 > # X < 2 ) - C < 7 > # X < 3 > - C < 8 ) * X < 4 ) # X < 1 2 ) - C < 9 > *

1 X ( 5 ) / X < 1 2 ) - C < 1 0 ) # X ( 6 ) / X < 1 2 ) - C < 11> 4tX < 7 » # X ( 1 2 ) - C < 1 2 ) # X < 4 ) # X ( 5 ) —
2 C ( 1 3 ) #X< 2 ) # X < 5 ) / X ( 1 2 ) - C (  1 4 ) # X < 2 ) # X ( 4 ) # X < 5 ) - C < 1 5 ) * X ( 2 ) / X ( 4 ) $ X ( 5 )
3 / X < 1 2 ) * * 2 ~ C < 1 6 > * X < 1 0 ) / X < 1 2 )

P H I < 3 ) = 1 » 0 - C ( 1 7 ) * X < 1 ) - C < 1 8 ) # X < 2 ) - C < 1 9 ) # X < 3 ) - C < 2 0 ) # X ( 4 ) - C < 2 1 ) # X ( 5 )  
1 - C < 2 2 ) #X < 6 ) -C  < 2 3 ) # X ( 8 ) -C  < 2 4 ) 4 X ( 4 ) #X < 5 ) -C  < 2 5 ) # X ( 2 ) # X ( 5 ) -
2 C < 2 6 ) * X < 2 ) * X < 4 ) * X < 5 ) - C < 2 7 > * X < 2 > * X < 5 ) / X < 4 > - C < 2 8 > * X < 9 > -
3 C < 2 9 ) * X < l ) * X < 9 ) - C < 3 0 > # X a i >

RETURN
END
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(18). Test problem #3 used by Dembo [46].

GENERAL INFORMATION:
7 Variables

14 Functional inequality constraints
14 Variables bounds 1 1 x^ < 2000

1 < x2 1 120 
1 < x3 < 5000 

85 < x4 i 93 
90 < x5 < 95 
3 < xg S 12 

145 < x7 S 162

STARTING INFORMATION:
Xo 55 [1745, 110, 3048, 89, 92.8, 8, 145]
f(xo) = 2125.6598

gl <xo = .0153948067 g8 (xo) = .0080782000

g2 <xo - .0101274528 gg(xo) - .0132200000

*3 <xo = .0144536405 gl0(̂ o) = -530463480
g4 (xo = .0110454741 gll(xo) = .087631602

95 <xo = .0095946752 gl2 (xo) = .06163944 8

g6 (xo = .0128187200 gl3 (x0) = .250847500

g7 txo = .0066451185 g1 4 (xQ) = 6.86844699

SOLUTION:
x* = [1698.10594, 53.7010394, 3031.2343436, 90.1147228, 

95, 10.49405556,153.53535167]
f{x*>= 1227.2272509

Constraints #1, 3, 6, 7 and 9 are active.
COMMENTS: The problem involves an alkylation process
optimization.
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F U N C TI O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #18

FUNCTION F ( X )
DIMENSION C < 6 ) fX<1>
DATA C / 1 • 7 1 5 r . 0 3 5 f 4 . 0 5 6 5 p 1 0 . O p 3 0 0 0 . O p - . 0 6 3 /
F < s C < l )# X < l> + C < 2 > * X < l ) * X < 6 )+ C < 3 > # X < 3 )+ C < 4 > * X < 2 )+ C < 5 > + C < 6 > *X < 3 ) * X < 5 >
RETURN
END

SUBROUTINE CONST(XpN P H IpP H I )
DIMENSION X<1 ) pP H I (1> fC ( 3 8 )
DATA C / . 5 9 5 5 3 5 7 1 E - 0 2 1 . 0 8 3 9 2 8 5 7  r - . 1 1 7 5 6 2 5 0 11 . 1 0 8 8 1 . 1 3 0 3 5 3 3 f - ♦ 0 0 6 6 0 3

1 3 »♦6 6 1 7 3 2 6 9 E - 0 3 1 . 1 7 2 3 9 8 7 8 E - 0 1 p - . 5 6 5 9 5 5 5 9 E - 0 2  p- . 1 9 1 2 0 5 9 2 E - 0 1 f
2 .5685075E+02 r1 * 08702p.32175 p-.03762 p.006198p .24623121E+04 p
3 -.25125634E+02p.1611 8 9 9 6 E + 0 3 p5000.p- . 4 8 9 5 1 E + 0 6 p . 4 4 3 3 3 3 3 3 E + 0 2 p
4 *33p . 0 2 2 5 5 6 p - » 0 0 7 5 9 5 p. 0 0 0 6 1 p- . 0 0 0 5 p.819672p.819672p24500.p-250.p
5 . 1 0 2 0 4 0 8 2 E - 0 1 » . 1 2 2 4 4 8 9 8 E - 0 4  p . 0 0 0 0 6 2 5 0  p .0 0 0 0 6 2 5 0  p- . 0 0 0 0 7 6 2 5  p l .22»
6  1 . O p - 1 . 0 /

P H I< 1 ) - 1 .0 - C < 1 > # X ( 6 > # X < 6 > - C < 2 > # X < 3 > /X < 1 > - C < 3 > # X < 6 >
P H I< 2 > - 1 . 0 - C < 4 > * X < 1 ) / X < 3 > - C < 5 > * X < 1 ) / X < 3 > # X < 6 > - C < 6 > # X < 1 > / X < 3 ) * X < 6 >

1 # X ( 6 )
PHI ( 3 )  ■’■ I . 0 -C  ( 7 ) # X ( 6 ) # X < 6 ) - C < 8 ) # X < 5 ) - C ( 9 ) # X < 4 ) - C < 1 0 ) i | t X ( 6 )  
P H I < 4 ) = 1 . 0 - C < 1 1 ) / X < 5 ) - C < 1 2 > / X < 5 ) # X < 6 ) - C < 1 3 > * X < 4 > / X < 5 > - C < 1 4 > / X < 5 >

1 *X < 6 > # X < 6 )
P H I< 5 ) « 1 . 0 - C < 1 5 > * X < 7 > - C < 1 6 > * X < 2 > / X < 3 > / X < 4 > - C < 1 7 > # X ( 2 > / X < 3 >
P H I < 6 ) = 1 . 0 - C < 1 8 ) / X < 7 > - C < 1 9 ) * X < 2 > / X < 3 > / X < 7 > - C < 2 0 > * X < 2 ) / X < 3 > / X < 4 >

1 / X ( 7 )
P H I < 7 ) = 1 ♦0 - C ( 2 1 ) / X <  5 > -C < 2 2 )# X <  7 ) / X ( 5 )  
P H I < 8 ) = 1 . 0 - C < 2 3 ) # X < 5 > - C < 2 4 ) # X < 7 >
P H I < 9 ) “ 1 • 0 - C < 2 5 ) # X < 3 ) - C < 2 6 ) # X < 1)
P H I <10 >=1«0 -C  < 2 7 ) # X ( 1 ) / X  < 3 ) -C  < 28  >/ X ( 3 )
P H I < 1 1 ) = 1 . 0 - C < 2 9 > # X < 2 ) / X < 3 ) / X < 4 ) - C < 3 0 ) # X < 2 > / X < 3 )
P H K 1 2 ) = 1 . 0 - C < 3 1 > # X < 4 ) - C < 3 2 > / X < 2 > * X < 3 ) * X < 4 >
PHI < 13 ) **1 ♦0 - C ( 3 3 ) # X ( 1 ) # X ( 6 ) -C  < 3 4 ) * X  < 1 ) - C ( 3 5 ) # X ( 3 )
PHI ( 1 4  ) » 1 . 0 -C  ( 3 6 ) / X  < 1 ) #X < 3 ) - C  < 3 7 ) / X  < 1 ) - C ( 3 8  > #X < 6 )
RETURN
END
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(19). Test problem #4 used by Dembo [46].

GENERAL INFORMATION:
8 Variables
4 Functional inequality constraints 

16 Variable bounds .1 - xj * 10 j "*1*2,3, ...,8

STARTING INFORMATION:
xQ — [6, 3, .4, .2,6, 6,1, .5]
f(x ) = 3.65736570 o
g. (5 ) = .04720000 g,(x ) = -.099050230

J. o  J O

= --07640000 g. (x ) = -.416644828e. O 4 O

SOLUTION:
x* - [6.465036554, 2.23275840, .6674155016, .5957723857, 

5.932688789, 5.52724000,1.0133420, .400676365]
f(x*) = 3.951163444
Constraints #1, 2, 3 and 4 are active.

COMMENTS: The problem involves the design of a reactor.
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F U N C T I O N  A N D  C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #19

FUNCTION F<X>
DIMENSION X ( l )
A = 1 * 0 E - 1 5
I F ( X ( l ) * G T t A * A N D  *X<2>»GT*A* AND »X<7)»GT«A* AND * X < 8 ) * G T * A )

1 GO TO 10  
F = 1 . 0 E 5  
RETURN

10 F = 0 » 4 * X < l > * # . 6 7 # X < 7 > # # < - . 6 7 > + 0 . 4 # X < 2 > # ) l U 4 7 # X < 8 > # # < - - * 6 7 ) + 1 0 . 0 “ X < l>  
1 ~X<2>

RETURN
END

SUBROUTINE C O N S T (X r N P H I fP H I )
DIMENSION X ( 1 ) » P H I ( 1 )
PH I  < 1 ) esl  ♦ 0 - 0 * 0 5 8 8 # X < 5 ) * X ( 7 ) - 0 * 1 * X ( 1 )
P H I < 2 ) » 1 ♦ 0 - 0 . 0 5 8 8 # X ( 6 ) # X < 8 ) - 0 * 1 # X ( 1 > -0 » 1 # X < 2 )
I F < X < 3 ) ♦ G T . 1 . 0 E - 1 5 )  GO TO 4
P H I < 3 ) « - 1 * 0 E 5
GO TO 5

4 PHI<3)=>1.O“ 4 . O # X ( 3 ) / X < 5 ) - 2 . O * X < 3 > # # < - . 7 1 > / X < 5 > - . O 5 0 8 * X < 3 >  
1 * * < - 1 . 3 > * X < 7 )

5 I F ( X ( 4 ) . G T . 1 . 0 E - 1 5 )  GO TO 6  
P H I ( 4 ) = ” 1»0E5
GO TO 7

6  P H I < 4 ) = 1 . 0 ~ 4 . 0 * X < 4 > / X < A > - 2 . 0 * X < 4 > * # < - , 7 1 > / X < 4 > - . 0 5 8 8 * X < 4 >  
1 * * < - 1 . 3 > * X < 8 >

7 RETURN 
END
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(20). Test problem #5 used by Dembo [46],

GENERAL INFORMATION:
8 Variables
6 Functional inequality constraints

16 Variable bounds
10000 * Xl < 100 1000 < x5 < 10
10000 s x2 < 1000 1000 < x6 < 10
10000 £ x3 < 1000 1000 < x7 < 10
1000 < x4 ^ 10 1000 x8 10

STARTING INFORMATION:
x q = [5000, 5000, 5000, 200, 350, 150, 225, 425]
f{x ) = 15000.0 o
g ^ x ^  = .222222439 g4 ( x q ) = .125
g_(x ) = -.05555556 g_(x ) - .0625 ̂ o o o
g3 (5co) = 3.5527 X 10~15 g6 ^ Q ) = .250

SOLUTION:
x* = [579.179816, 1359.9511,5110.11713, 182.00710,

295.595315, 217.992897,286,411787, 395.595315]
f (x*) = 7049.248049
Constraints #1, 2, 3, 4, 5 and 6 are active.

COMMENTS: The problem involves the design of a heat
exchanger.
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  F O R  P R O B L E M  #20

FUNCTION F(X>  
DIMENSION X ( l )  
F=X<1 ) + X ( 2 ) + X ( 3 )  
RETURN 
END

SUBROUTINE CONST<X*NPHI*PHI>
DIMENSION X ( 1 > * P H I ( 1 ) * C < 1 6 >
DATA C / 8 3 3 . 3 3 2 5 2 * 1 0 0 . 0 * - 8 3 3 3 3  * 3 3 3  * 1 2 5 0 . 0 * 1 . 0  * - 1 2 5 0 . 0 * 1 2 5 0 0 0 0  * 0 

1 * 1 . 0 * —2 5 0 0 . 0 * . 0 0 2 5 * . 0 0 2 5 * . 0 0 2 5 * . 0 0 2 5 * - . 0 0 2 5 * . 0 1 * - . 0 1 /
P H I ( 1 ) = 1 » 0 - C < 1 > / X ( i ) # X ( 4 ) / X < 6 ) - C < 2 ) / X < 6 ) “ C < 3 ) / X < l ) / X ( 6 )  
P H I < 2 > » 1 . 0 - C < 4 > / X ( 2 > * X < 5 > / X < 7 ) - C < 5 > * X < 4 > / X < 7 > - C < 6 > / X < 2 > * X < 4 > / X < 7 >  
P H I < 3 ) « 1 » 0 - C  < 7 ) / X ( 3 ) / X ( 8 > - C ( 8 ) * X ( 5 ) / X < 8 ) - C < 9 ) / X < 3 ) J | c X < 5 ) / X < 8 )
PHI < 4 ) = 1  ♦ 0 -C  < 1 0 ) # X ( 4 ) - C < l l ) 3 | c X ( 6 )  
P H I < 5 > = 1 .0 - C < 1 2 ) # X < 5 > - C < 1 3 ) * X < 7 > - C < 1 4 > * X < 4 >
P H I < 6 ) » 1 * 0 - C < 1 5 ) # X ( 8 ) - C ( 1 £ ) # X < 5 )
RETURN
END
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(21). Test problem #6 used by Dembo [46].

GENERAL INFORMATION:
13 Variables
13 Functional inequality constraints 
26 Variable bounds
1 < xx < .1 
1 £ x2 < .1 
1 £ x3 £ .9 
.1 < x4 < .0001 
.9 < x5 £ .1 
.9 < xg < .1 

1000 < x? < .1

1000 < x8 < .1 
1000 £ x9 < 500 
500 S x1Q < .1
150 £ xn  i 1
150 < xl2 < .0001
150 < x13 < .0001

STARTING INFORMATION:
xn = [.5, .8, .9, .1, .14, .50, 489, 80, 650, 450, 150, 
° 150, 150]
f(*o> s 450.0

st .654881867
g2 ® = -.20370813
g3 W — .535981300
g4 ® s .066000000
g5 (J) t s .075745000
g6 (5) - -.181711949
g7 (x) — .027600000

^8 (x) = 1.421 x 10-14

g9 (x) « -.012500000 
giO (x) » .111111111 
gil(x) « .375000000
gl2 (ic) = .182000000 
gl3(x) « .363125000

SOLUTION:
[.80377316, .9, .944411275, .1, .190821994, 
.304576338, 574.085832,74.0858325, 500.00746, 
.1, 20.2353465,77.3430724, .01]
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(21). (cont'd)

f(x*) = 97.5884189
Constraints #1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13 
are active.

COMMENTS: The problem is a mathematical programming model
of a three-stage membrane separation process.
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F U N C T I O N  AND C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #21

FUNCTION F<X)
DIMENSION X ( l )
F = X < 1 1 )+ X < 1 2 )+ X < 1 3 >
RETURN
END

SUBROUTINE CONST<X»NPHI»PHI>
DIMENSION X < l > f P H I < l ) ' C < 3 6 >
DATA C / 1 ♦ 2 6 2 6 2 6 1- 1 . 2 3 1 0 5 9 1 1 . 2 6 2 6 2 6  r - 1 . 2 3 1 0 5 9  * 1 . 2 6 2 6 2 6  » - 1 . 2 3 1 0 5 9 1

1 . 0 3 4 7 5 0 , . 9 7 5 1- . 0 0 9 7 5 1 * 0 3 4 7 5 0  * . 9 7 5  p- ♦ 0 0 9 7 5 0  * 1 . 0 » 1 . 0 t - 1 . 0 » *  0 0 2 ,
2 . 0 0 2 * 1 . 0 * 1 . O r - . 0 0 2 * - . 0 0 2 * 1 . 0 * 1 . 0 * 5 0 0 . * - 1 . 0 * - 5 0 0 .  * . 9 » . 0 0 2 * - . 0 0 2 *
3 1 . 0  * 1 ♦ 0 *  * 0 0 2 * - . 0 0 2 * . 0 3 4 7 5  * . 9 7 5 *  » * 0 0 9 7 5 /  

P H I < 1 > » 1 . 0 - C < 1 > * X < 8 ) / X < 1 1 > - C < 2 > * X < 1 > * X < 8 > / X < 1 1 >  
P H I < 2 ) « 1 . 0 - C < 3 ) * X < 9 ) / X < 1 2 > - C < 4 > # X < 2 ) # X < 9 ) / X < 1 2 >  
P H K 3 ) = 1 . O - C < 5 ) * X < 1 0 > / X < 1 3 > - C < 6 ) # X < 3 ) * X < 1 O > / X < 1 3 >
PH I ( 4  ) ® 1 ♦ 0 - C  < 7 )# X < 2 ) /X < 5 ) -C < 8 )> I< X < 2 )“ C < 9 > # X < 2 ) * X < 2 ) / X < 5 )
P H I ( 5 ) » 1  , 0 - C < 1 0 > * X < 3 ) / X < 6 ) - C < i l ) * X < 3 ) - C < 1 2 ) * X < 3 ) # X < 3 > / X < 6 )
P H I ( 6 ) = ! . 0 - C < 1 3 ) # X < 1 ) / X < 5 ) / X < 7 ) # X < 8 ) “ C ( 1 4 > # X ( 4 ) / X ( 5 >

1 - C < 1 5 > * X < 4 ) / X < 5 ) / X ( 7 > * X < 8 >  
P H I < 7 ) - 1 . 0 ~ C < 1 6 ) * X < 2 > # X < 9 ) - C < 1 7 > * X < 5 ) # X < 8 ) - C < 1 8 ) # X < 6 )

1 - C < 1 9 ) * X < 5 ) - C < 2 0 ) * X < 1 ) # X ( 8 ) - C < 2 1 > * X < 6 ) # X < 9 )
P H I < B >=1♦ 0 - C  < 2 2 ) / X ( 2  > #X < 3 >/ X  < 9 ) #X <10 >- C ( 2 3 ) #X < 6 ) / X  < 2 )

1 -C < 2 4 ) / X  < 9 ) -C  < 2 5 ) / X ( 9 ) # X < 1 0 ) -C  < 2 6 ) / X  < 2 ) #X < 6 ) / X  < 9 )
P H I < 9 ^ l . 0 - C < 2 7 ) / X ( 2 ) - C < 2 8 ) #X< 1 0 ) - C < 2 9 ) / X < 2 ) # X < 3 ) # X ( 1 0 )
P H I < 1 0 ) = 1 * 0 - C < 3 0 > # X ( 2 ) / X < 3 )
P H I < 1 1 ) ® 1 . 0 - C < 3 1 > * X < 1 ) / X < 2 )
P H I <1 2 ) « 1 * 0 - C ( 3 2 ) # X ( 7 ) - C < 3 3 ) # X < 8 )
P H I < 1 3 ) = > 1 . 0 - C < 3 4 > * X < 1 ) / X < 4 > - C ( 3 5 ) * X < 1 > - C < 3 6 > * X < 1 > * X ( 1 > / X < 4 >
RETURN
END
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{22). Test problem #7 used by Dembo [46].

GENERAL INFORMATION:
16 Variables
19 Functional inequality constraints 
32 Variable bounds
.1 < X1 i .9 .1 < x9 <*  • 9
.1 £ X2 < .9 .1 < X10 < .9
.1 £ X3 < .9 1 < X11 < 1000
.1 S X4 S .9 .000001 < X12 £ 500
.9 < X5 * 1 1 < X13 £ 500

.0001 < x6 < .1 500 < X14 £ 1000
.1 < X7 < .9 500 < X15 1000
.1 < X8 < .9 .000001 < X16 < 500

'ARTING INFORMATION:
X = [.8 ,  . 83, .85 ,  .87,.90, .1 0 , . :L2, .19,O 13 .1, 71.8, 640, 650, 5. 7]
f(xQ) = 284.739749

91 (*o 
92 (*o 
93 <*o 
9 4 (*o 
g5 (i?o 
96
97 (*o 
98 (*o 
99 (*o
'10

= .004400000
= .006368958 gll(xo) -.0340096550

— .052865132 ^l2(xo) — .0022000000

.060339100
s .9744140620

= .041887931 g14(xo) = .0333333333

= .017415364 g15(xo) s .0229885700

-.021515790 g16(xo) s .0235294148

= -.11609600 g17(xo) s .0361445783

-.14338235 g18'“o' S5 .1379310340

.15354377 g19(xo) s .2400000000

512,
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(22). (cont'd)

SOLUTION:
x* = [.80377316, .81611713, .9, .9, .9, .1, .10703686, 

.19083674, .19083674, .19083674, 505.04987, 
5.0498694, 72.636801, 500, 500, .00001]

f(x*) = 174.786995
Constraints #1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15, 18 and 19 are active

COMMENTS: The problem is a mathematical programming model
of a five-stage membrane separation process.
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FUN C TI O N  A N D  C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #22

FUNCTION F ( X )
DIMENSION X ( l )
DATA A ' B / 1 . 2 6 2 6 2 6 ' - ! * 2 3 1 0 6 0 /
F » A *< X < 1 2 > + X < 1 3 > + X < 1 4 > + X (1 5 > + X < 1 6 > > + B * < X < 1 ) * X < 1 2 )+  

1 X < 2 ) * X < 1 3 > + X < 3 > * X < 1 4 > + X < 4 > * X U 5 > + X < 5 > * X < 1 6 > > 
RETURN 
END

SUBROUTINE C O N S T ( X 'N P H I 'P H I>
DIMENSION X ( 1 ) ' P H I ( l ) ' C ( S l )
DATA C / * 0 3 4 7 5 » . 9 7 5 » - . 0 0 9 7 5 > . 0 3 4 7 5 ' . 9 7 5 ' - . 0 0 9 7 5 » . 0 3 4 7 5 '
1 .975'-♦00975'.03475'.975'-.00975'.03475'♦975'-.00975 r1.0'
2 l . O ' - l . O r l . O ' . 0 0 2 ' * 0 0 2 ' - . 0 0 2 r - . 0 0 2 ' 1 * 0 ' . 0 0 2 ' . 0 0 2 ' 1 . 0 ' - . 0 0 2 '
3 - . 0 0 2 ' 1 . 0 ' 1 . 0 ' 5 0 0 . 0 ' - 5 0 0 . 0 ' - 1 . 0 ' 1 . 0 ' 1 * 0 ' 5 0 0 . 0 ' - 1 * 0 ' - 5 0 0 . 0 '
4 . 9 ' . 0 0 2 » - . 0 0 2 ' . 0 0 2 ' - . 0 0 2 » 1 . 0 ' 1 . 0 ' 1 . 0 ' 1 . 0 ' 1 . 0 ' 1 . 0 ' 1 . 0 /  

P H I ( 1 > = 1 . 0 - C < 1 > # X < 1 > / X < 6 > - C < 2 > # X < 1 > - C < 3 > * X < 1 > * X < 1 ) / X < 6 >  
P H I< 2 ) = 1 .0 - C < 4 ) # X < 2 > / X < 7 > - C < 5 > # X < 2 > - C < 6 > * X < 2 > * X < 2 ) / X < 7 >  
P H I < 3 > = 1 . 0 - C ( 7 ) * X < 3 ) / X ( 8 > - C < 8 > * X ( 3 > - C < 9 > * X < 3 ) # X < 3 > / X < 8 >
PHI ( 4 ) * * 1 . 0 - C (  1 0 ) J f c X < 4 ) / X ( 9 ) - C < l i ) # X ( 4 ) - C < 1 2 ) # X ( 4 ) # X < 4 > / X < 9 )
P H I ( 5 ) = 1 . 0 - C < 1 3 > * X < 5 > / X < 1 0 > “ C < 1 4 ) * X < 5 ) - C < 1 5 > * X < 5 ) * X < 5 ) / X < 1 0 >
P H I < 6 > » 1 . 0 - C < 1 6 ) # X < 6 ) / X < 7 ) - C < i 7 > # X < l > / X < 7 > / X < l l ) * X < 1 2 > - C < 1 8 ) #

1 X ( 6 ) / X < 7 > / X < 1 1 > * X < 1 2 )
P H I< 7 )  = 1 . 0 - C  ( 1 9 ) # X < 7 ) / X ( 8 ) - C ( 2 0 ) # X < 7 ) / X < 8 ) # X < 1 2 ) - C < 2 1 ) 3 | c X ( 2 ) /

1 X < 8 > #X < 1 3 ) -C  < 2 2 ) #X < 1 3 ) - C ( 2 3 ) # X ( 1 ) / X ( 8 ) # X ( 1 2 )
P H I < 8 > » 1 »0 -C  < 2 4 ) #X < 8 ) -C  < 2 5 ) #X < 8 ) #X < 1 3 ) -G  < 26  > * X ( 3 ) # X ( 1 4 ) -C  < 2 7 ) #

2 X < 9 ) - C < 2 8 ) * X < 2 > * X < 1 3 > - C < 2 9 > # X < 9 > * X ( 1 4 >
P H I ( 9  >“ 1 . 0 -C  < 3 0 ) # X < 9 ) / X < 3 ) - C < 3 1 ) / X < 3 ) # X ( 4 ) / X < 1 4 ) # X < 1 5 ) - C < 3 2 ) /

1 X < 3 > * X < 1 0 ) / X < 1 4 ) - C < 3 3 > / X < 3 > * X < 9 > / X < 1 4 > - C ( 3 4 > / X < 3 > * X < 8 > / X < 1 4 >
2 *X<15>

P H I < 1 0 > = 1 . 0 - C < 3 5 ) / X < 4 > # X < 5 ) / X < 1 5 ) * X < 1 6 ) - C < 3 6 > / X < 4 > * X < 1 0 > -  
1 C < 3 7 ) / X < 1 5 > - C < 3 8 ) / X < 1 5 ) * X < 1 6 > - C < 3 9 > / X < 4 ) * X < 1 0 > / X < 1 5 >  

P H I < 1 1 ) = 1 . 0 - C < 4 0 ) / X < 4 ) - C < 4 1 > # X ( 1 6 > - C < 4 2 > / X < 4 > # X < 5 > * X < 1 6 >  
P H I < 1 2 ) » 1 . 0 - C < 4 3 ) * X < 1 1 ) - C < 4 4 ) * X < 1 2 )  
P H I ( 1 3 ) « 1 . 0 - C ( 4 5 ) / X < 1 1 ) * X ( 1 2 )
PHI ( 1 4 ) != 1 . 0 - C ( 4 6 ) # X ( 4 ) / X < 5 )
P H I ( 1 5 ) « 1 . 0 - C ( 4 7 ) * X ( 3 ) / X ( 4 )
P H K 1 6 > « 1 . 0 - C < 4 8 ) * X < 2 ) / X < 3 >
P H I < 1 7 ) » 1 . 0 - C < 4 9 ) # X < 1 > / X ( 2 >
P H I < i 8 > « 1 . 0 - C ( 5 0 > # X < 9 > / X < 1 0 )
P H I ( 1 9 ) » 1 # 0 - C ( 5 1 > * X ( 8 ) / X ( 9 )
RETURN
END
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(23). Test problem #8A used by Dembo [46].

GENERAL INFORMATION:
7 Variables
4 Functional constraints

14 Variable bounds .1 S < 10 j = 1,2,3,
.01 < x? 1 10

STARTING INFORMATION:
x — 6 3 = 1|2,3, .. * , 7
°j
f(x ) = 2205.86837 o
g, (x ) = -369.81882 g, (x ) = -15.9306112• x o  3 0
g0 (x ) = -4.3413695 (5c ) = -137.947340
Z O  4 0

SOLUTION:
x* = [2.8560239, .6108117965, 2.150810, 4.71196656,

.99941464, 1.34732658, .0316508066]
f(x*) « 1809.764787
Constraints #1, 2 and 3 are active.

COMMENTS: This is a prototype geometric programming
problem.
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F U N C T I O N  A N D  C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #23

FUNCTION F<X>
DIMENSION X ( l >
DATA C l» C 2 r C 3 » C 4 /1 0 .  * 1 5 * * 2 0 . > 2 5 . /
ALPHA®-.2 50
F<=C1 *X  < 1 )  / X  < 2 )  *X  < 4 ) * # 2 / X  < 6  ) # # 3 * X  < 7 ) *#ALPHA+C2/X < 1 )  /

1 X < 2 > * * 2 # X < 3 > * X < 4 ) / X < 5 > # X < 7 ) * # < - . 5 0 ) + C 3 # X < l > # * < - 2 > * X < 2 > / X < 4 >
2  # X < 5 > * # < “ 2 ) * X < A ) + C 4 * X < 1 ) * * 2 * X < 2 > # * 2 / X < 3 ) # X < 5 > # * . S 0 / X < £ > # * 2
3 #X<7>

RETURN
END

SUBROUTINE C O N ST(XfN PHI»PHI)
DIMENSION X ( 1 ) r P H I ( l ) r C ( 1 4 )
DATA G / . 5 » . 7 *  » 2 r l . 3 r . 8 r 3 . 1 r 2 » r * l r l . f » 6 5 > « 2 ? * 3 » * 4 1 * $ /  
P H I < 1 ) ® 1 . 0 - C < 1 > * X < 1 ) * * . 5 / X < 3 > / X < 6 > * * 2 * X < 7 > - C < 2 > * X < 1 ) * * 3 * X < 2 > /

1 X < 3 > * * 2 # X < 6 > * X < 7 > # # . 5 - C < 3 > / X < 2 ) # X < 3 > / X ( 4 > # * . 5 # X < A ) # # < 2 . / 3 . > #
2  X < 7 ) * * . 2 5

P H I < 2 )  ® 1 ♦0 - C  < 4 >/ X  < 1 ) # # . 5#X < 2 ) / X < 3 ) / X < 5 ) # X < 6 ) - C < 5 ) # X ( 3 ) / X ( 4 ) /
1 X < 5 > * X < 6 > * # 2 - C ( < S ) / X < l > * X < 2 > * * . 5 / X < 4 ) * * 2 / X < 5 ) * X < 6 > * * < l . / 3 . > 

P H I < 3 > ® 1 . 0 - C < 7 ) * X < l > / X < 3 ) * # < 1 . 5 > * X < 5 > / X < 6 > * X < 7 > # * < l » / 3 .  > - C C 8 ) *
1 X < 2 > / X < 3 ) * # . 5 * X ( 5 > / X < A > / X < 7 > * * . 5 ~ C ( 9 ) / X < 1 > * X < 2 > # X < 3 > * * . 5 * X < 5 >
2 - C < 1 0 ) / X < 2 ) * * 2 * X < 3 ) # X < 5 ) / X < £ ) * X < 7 >  

F H I ( 4 > = - C < l l ) / X < l > * # 2 * X < 2 > / X < 4 ) # X < 5 > * * . 5 * X < 7 > * # < l . / 3 .  > - C < 1 2 ) * X < l >
1 J M u 5 * X < 2 ) * * 2 * X ( 3 > * X < 4 > # * < l . / 3 .  ) / X < 5 > # * < 2 . / 3 .  > # X ( 7 > * * . 2 5 - C a 3 > /
2 X < 1 ) * * 3 / X ( 2 ) # * 2 * X < 3 > # X < 5 ) # X < 7 > # * . 7 5 - C < 1 4 > / X < 3 > * * 2 * X < 4 > #
3 X < 7 > * * . 5 0  

P H I< 4 ) = 1 » 0 + P H I< 4 )
RETURN
END
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(24). The welded beam problem.

GENERAL INFORMATION:
4 Variables
5 Functional inequality constraints
3 Variable bounds x^ > .125; x2 - 0; x3 t 0

STARTING INFORMATION:
Xq = [lr 7, 4, 2]
f(x ) = 15.81545 o
g (x ) = .867852506

g.(x ) = 183.187852 g (x ) = 1.42500000 4 _°
* ° g_(x ) = .232850000

g3 (x ) = 1.00000000 b °

SOLUTION:
x* = [.24436897, 6.2187934158,8.29147139, .24436897] 
f (x*) = 2.38116476461
Constraints #1, 2, 3 and 4 are active.

COMMENTS: This problem involves the design of a welded
beam structure to produce the minimum cost. The design 
variables include the weld thickness, the weld length, the 
bar thickness and the breadth of the bar. A complete 
description may be found in reference [66].
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F U N C T I O N  A N D  C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #24

FUNCTION F ( X )
DIMENSION X U >
F ° > 1 « 1 0 4 7 1 * X < 1 ) * X < 1 > * X < 2 ) + '0 4 8 1 1 * X < 3 ) * X < 4 > * < 1 4 '+ X < 2 > >
RETURN
END

SUBROUTINE CONST( X * N P H I r P H I )
DIMENSION X < 1 ) » P H I ( 1 )
REAL LrLOAD 
REAL MrJ
L = 1 4 .  *  L 0A D »6000 .  ♦ T D « 1 3 6 0 0 .  *  S IG D=30000*
F=LOAD
T 1 ® F / < 1 » 4 1 4 * X ( 1 ) # X < 2 > )
M^F# <I.,+ < X < 2 ) / 2 * > )
R = S Q R T ( < X ( 2 > # X ( 2 ) / 4 * ) + < ( X < 3 ) + X ( l ) ) / 2 . ) * * 2 )
J = 2 . * <  . 7 0 7 * X < i ) * X < 2 > # < < X < 2 > * X < 2 ) / 1 2 . > + < < X ( 3 > + X < l > > / 2 . > * * 2 > >
T2=M#R/J
COSA=X ( 2 ) / < 2 » # R )
T = S G R T m J m + 2 . * T l * T 2 * C Q S A + T 2 * T 2 >
S I G » 6 « * F * L / < X < 4 > * X ( 3 > * X < 3 ) )
P H I < 1 > = < T D - T > / 1 0 0 0 0 .
P H I ( 2 ) = ( S I G D - S I G ) / 1 0 0 0 0 .
P H I ( 3 ) = X ( 4 ) - X < 1 )
E = 3 0 *E 6
E I « E * X ( 3 ) * X < 4 > # X < 4 ) # X < 4 > / 1 2 .
G - 1 2 . E 6
G J « G * X < 3 > * X < 4 ) * X < 4 ) # X < 4 ) / 3 .
E IT C = E I * G J
E ID C ~ E I /G J
REITC*SClRT<EITC)
REIDC=SGRT<EIDC>
P C = 4 . 0 1 3 # R E I T C * < 1 . - < X < 3 ) / < 2 . * L > > * R E I D C > / < L * L >
PHI < 4 )  <= < PC -F  ) / lO O O O .
DEL=4 * # F # L * L # L /  < E*X  < 4 ) * X  < 3 ) * X  < 3 ) * X  < 3 ) )
P H I< 5 > ® .2 5 -D E L
RETURN
END
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(25). Coupler curve problem.

GENERAL INFORMATION:
6 Variables
4 Functional inequality constraints 
6 Variable bounds .5 < ^ 3

x 2 * 0; x3 £ 0 
2 < x4 S 10

STARTING INFORMATION:
x * = [1, 4.5, 4, 5, 3, 3]0
f(x ) = 2.3088037 o
g.(x ) = 2.5 g,(x ) = 5.20584413

1  O 3  O

g.(x ) =3.5 g,(x ) = 25.70584412 O 4 o

SOLUTION:
x* = [.996387714, 4.19429134,2.97449996, 3.962212286, 1.65300, 1.2551]
f (x)* = .06060082755
Constraint #3 is active.

COMMENTS: This problem involves the design of a four
bar linkage to approximate a required curve. The objective 
function represents the mean square error of the actual 
points generated to the desired points on the curve.
A complete description of the problem is given by Tomas 
[67].
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A U X I L I A R Y  S U B R O U T I N E  A N D  F U N C T I O NL I S T I N G  FOR P R O B L E M  #25
246

SUBROUTINE DES<PH I*X1pY1>
DIMENSION P H I < 3 1 > pX 1 < 3 1 > pY 1 < 3 1 )
P I * 3 . 1 4 1 5 9 2 6 5 4  
DO 10 1 = 1 p31
X I <I ) « * 4 0 + S I N <  <2*0#PI)Ht<  < P I“ P H K I )  ) / < 2 * 0 * P I > - * 1 6 ) )  

10 Y 1 <I ) = 2 * 0 + * 9 0 * S I N < P I - P H I <I ) )
RETURN
END

FUNCTION F<X)
DIMENSION X < 1 ) pX 1 A ( 3 1 ) pY1A<31)
DIMENSION P H I < 3 1 ) pX 1 < 3 1 ) pY 1 < 3 1 )
DATA I A / 0 /
I F < I A * E Q * 1> 0 0  TO 2  
I A = t
P I = 3 . 1 4159  
X I N C = < 2 , 0 * P I > / 3 0 » 0  
DO 1 1 = 1 r 31
P H I <I> = X IN C # F L 0 A T < 1 - 1 )

1 CALL DES<PHIpX 1 pY1>
2  F = 0»0

DO 10 1 = 1 p31 
CALL POS<XpPHI<I>pCOSS> 
SINS=SGRT<ABS<1.0-C0SS*C0SS>)  
C 0 S G = < X < 4 > + X < 3 ) *C 0 S S -X < 1 > *C 0 S < P H I< I> )  ) /X < 2 >  
S IN G = < X < 3 )# S IN S -X < 1 ) $ S I N < P H I < I ) ) ) / X < 2 )  
X 1 A < I )= X < 1 > * C Q S < P H I< I> )+ X < 5 > # C 0 S G -X < 6 > *S IN G  
Y 1 A < I )= X < 1 > *S IN < P H I< I> > + X < 5 > # S IN G + X < 6 > # C 0 S G  

10 F=F+ < X I A <I ) - X I <I ) ) # * 2 +  < Y 1 A < I ) - Y 1 <I > ) * * 2  
F=SQRT < F / 3 1 » 0 )
RETURN
END



www.manaraa.com

C O N S T R A I N T  AND A U X I L I A R Y  S U B R O U T I N EL I S T I N G  FOR P R O B L E M  #25
247

SUBROUTINE CONST( X * NOONS r CON)
DIMENSION X ( 1 )  rCON(1>
COMMON/A/ XMU1rXMU2
DATA XMU1»X M U 2 / . 7 8 5 3 9 8 1 6 3 3 * 2 . 3 5 6 1 9 4 4 9 1 /  
C 0 N < i ) « = - X < l ) + X ( 2 ) + X ( 3 ) - X ( 4 )
CON( 2 ) » - X  < 1 ) - X < 2 ) + X < 3 ) + X < 4 )
C 0 N < 3 ) * -X < 2 > # X < 2 > -X < 3 > # X < 3 > + < X < 4 > -X < 1 > > * < X < 4 > -X < 1 > >  

1 + 2 » 0 * X < 2 > * X < 3 ) * C 0 S < X M U 1 > 
C 0 N < 4 )» X < 2 ) * X < 2 > + X < 3 > # X < 3 ) -< X < 4 > + X < 1 ) ) * < X < 4 > + X < 1 > >

1 - 2 . 0 * X < 2 ) * X < 3 ) * C 0 S < X M U 2 )
RETURN
END

SUBROUTINE POS<XrPHI*W>
DIMENSION X ( l )
REAL K pL vM
P I « 3 * 1 4 1 5 9 2 6 5 4
M = 2 » 0 * X < 1 > * X ( 3 ) * S I N < P H I )
Leb2 • 0#X < 3 ) # X < 4 ) —2» 0#X <1> #X < 3 )  $COS ( P H I )
K = X < 1 > * X < 1 ) - X < 2 > * X < 2 > + X < 3 > # X < 3 ) + X < 4 > * X < 4 ) - 2 .0 * X < 4 ) * X < 1 > * C 0 S < P H
A«L*L+M*M
B «2»0#K *L
C«K#K-M#M
TERM«SQRT <ABS( B # B - 4 . 0 * A # C >)
I F < P I - P H I * L T * 0 « 0 )  TERM«-TERM 
Wa <-B+TERM> /  < 2  . 0 # A )
RETURN
END
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(26). Whirlpool design problem [68].

GENERAL INFORMATION:
3 Variables
1 Functional equality constraint
4 Variable bounds x1 5 .044; 13.13 1 x2 5 24

x3 < 600

STARTING INFORMATION:
x q  = [.1, 18, 144]
f(x ) = 30.9860722 o
h,(x ) = -211.4309 i o

SOLUTION:
x* = [.122063682, 24,108.5052434] 
f(x*) = 27.305651561
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F U N C T I O N  L I S T I N G  FOR P R O B L E M  #26
249

FUNCTION F<X>
DIMENSION X ( l )
DATA RHOrXMUrCP r PR r P I t D » T I N r TSURF»HrWfRHOC rRHOA/* 0 7 4 7 r 

1 . 0 4 4 3 r  » 2 4 0 » • 7 0 9 r 3 . 1 4 1 5 9 f  . 5 2 5 *  7 5 . O r 4 5 . 0  c1 3 . 1 3 r 3 * 1 6 6 r 5 5 9 .  » 1 6 9 # /  
AF«X( 2 ) / X ( 1 ) # 2 . 0 *  <W #H -30 . 0 * P I * D * # 2 / 4 , > / 1 4 4 . 0  
A T » 3 0 . 0 * P I # D * X < 2 > / 1 4 4 . 0
A C « ( H # X < 2 ) - 1 0 . 0 * D # X < 2 ) - X ( 2 > / X < 1 > # . 0 0 6 # H > / 1 4 4 . 0  
G = < R H 0 * X < 3 ) * < H * X < 2 ) ) / < A C # 1 4 4 . 0 > > # 6 0 . 0  
R E » G *1 . 0 8 3 / ( 1 2 . 0#XMU)
I F < R E . L T . 1 . 0 E - 1 0 >  R E = 1 .0 E -1 0  
H O*( . 1 9 5 * G * C P ) / ( P R * # . 6 7 * R E * * . 3 5 )
XMDOT*RHO#X < 3 ) * H * X  < 2 ) / 1 4 4 . 0 * 6 0 . 0
DELP=1. 8 3 3 E - 0 6 / R H 0 # G # * 2 * 3 . 0 #  < A F /A C *R E **  < - . 5 )  + . 1 * A T /A C )
I F ( H O . L T • 1 . 0 E - 1 0 )  H 0 ® 1 .0 E -1 0  
X V A L * . 07 32 *S Q R T ( HO)
ETAF*TANH < XVAL) /XVAL
ETAS=1. 0 » A F / ( AF+AT) *  < 1 . 0 -E T A F )
HEF“ 1 . 0 -E X P  <-E T A S * H 0 * < AF+AT) / <  XMDOT*CP >)
Q=HEF* < T IN -T S U R F ) #XMDOT#CP 
H 1 *D E L P /R H 0 *X M D 0 T /1 .9 8 E + 0 6  
I F < H 1 * L T . 1 . 0 E - 1 0 )  H l = l . 0 E - 1 0  
C0STM«8GRT< H I ) / . 0 7 1 8 + 4 . 0
C 0STT=1 . 0 1 * 3 0 . 0 * X ( 2 ) # P I / 4 . 0 * ( D * * 2 - < D - . 0 3 6 ) # # 2 )
COSTF*. 4 7 * H * W * . 0 0 6 * R H 0 A /1 7 2 8 ♦*X  < 2 ) / X ( 1 )
COSTT ®C0STT#RH0C/17 2 8 .
F=COSTM+COSTT+COSTF *
RETURN
END
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C O N S T R A I N T  L I S T IN G  FOR P R O B L E M  #26
250

SUBROUTINE EQUAL(X»P S I fN P S I )
DIMENSION X < 1 ) * P S I < 1 >
DATA RHOrXMUrCPrPRrPI»D fT IN rT S U R F »HrW»RHOCrRHOA/. 0 7 4 7 1 

1 »0443r  »240r  « 7 0 9 » 3 * 1 4 1 5 9 » . 5 2 5 » 7 5 * 0 > 4 5 . Of 1 3 . 1 3 r 3 . 1 6 6 * 5 5 9 . 1 1 6 9 * /  
AF»X < 2 ) / X  < 1 ) * 2 . 0 *  <W * H - 3 0 . 0 * P I * D * * 2 / 4 . > / 1 4 4 ♦0 
A T = 3 0 . 0 * P I * D * X < 2 > / 1 4 4 . 0
A C ® < H * X < 2 > - 1 0 . 0 * D * X < 2 > - X < 2 ) / X < 1 > * . 0 0 6 * H > / 1 4 4 . 0  
G ® < R H O * X < 3 ) * < H * X < 2 > > /< A C * 1 4 4 .0 > > * 6 0 .0  
R E=G *1 . 0 8 3 /  ( 1 2 *  0*XMU)
I F < R E * L T . 1 . 0 E - 1 0 )  R E « 1 .0 E -1 0  
HO®( . 1 9 5 * G * C P ) / <  P R * * . 6 7 * R E * * , 3 5 )
XMDOT®RHO*X < 3 ) * H * X  < 2 ) / 1 4 4 . 0 * 6 0 . 0
DELP®1 . 8 3 3 E - 0 6 / R H 0 * G * * 2 # 3 . 0 *  < A F /A C # R E **< - .  5 )  + . 1# A T /A C ) 
I F ( H O * L T . 1 ♦ 0 E - 1 0 )  H 0 ® 1 .0 E -1 0  
XVAL®♦07 32 *S Q R T < HO)
ETAF»TANH( XVAL) /XUAL
ETAS®1 . 0 - A F / (A F + A T ) * ( 1 . O-ETAF)
HEF®1 , O-EXP <-E T A S *H O *< AF+AT >/< XMDOT*CP > >
Q®HEF*( T IN -T S U R F ) *XMDOT*CP
P S I ( 1 ) « 6 0 0 0 • 0 -Q
RETURN
END
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(27). Synthetic natural gas production problem [54],

GENERAL INFORMATION:
48 Variables 
2 Equality constraints 
1 Functional inequality constraint

72 Variable bounds x^ > .002 j =1,2,3, ...,48
Xj £ 2.0 j =1,2,3, ...,24

STARTING INFORMATION:
x = 1.0 j=l,2,3, ...,24
°3

x = 1.3 j=25,26, ..., 30

x = 1.0 j =31,32,..., 46

f(x ) = 1.8623009o
g1 (xQ) * .0319258906

W  = 0
h2(xQ) =  0

SOLUTION:
x* = [2, .002, 2, .0339797, .01657455, 2, 1.8945347,

.002, 2, .03424074, .016670308, 2, 2, .002, 2,

.002, .002,1.988000, 2,.002, 2,.002, .002, 2, 
1.0159886, .002,1.003163, .002,.002, .999691944, 
1.11272844, .002, 1.1024463, .002, .002, 1.1030764, 
.92326572, .9343325, .92947437, .91383802, 
.90517162, .89452569,1.174573, .002,1.12080408, 
.002, .002,1.1163321536]

Constraint is active at solution.
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F U N C T I O N  A N D  E Q U A L I T Y  C O N S T R A I N TL I S T I N G S  FOR P R O B L E M  #27

FUNCTION F ( X )
DIMENSION X ( l >
PEN < Z ) » ( . 1 + 2 . * Z * ( Z+SQRT < ♦ 1 + Z * Z ) > ) / A . 
E=0«
DO 100 13=1*12 
C = 1 . - X < I >

10 0  E=E+10*#C#C
DO 120 1 = 2 5 * 3 6  

12 0  E = E + 1 0 0 0 . * P E N < X < I ) - 1 . )
DO 140 1 = 3 7 * 4 2  

14 0  E = E + 2 0 0 0 . # P E N < X < I ) - 1 . )
DO 160 1 = 4 3 * 4 8  

16 0  E = E + 1 0 0 .# X < I>
F » E / 1 0 0 0 .
RETURN
END

SUBROUTINE E Q U A L (X *P S I*N P S I )  
DIMENSION X ( 1 ) * P S I ( 1 >
P S I < 1 ) = 1 2 *
P S I < 2 ) = 1 2 *
DO 170 1 = 1 * 1 2  
P S I ( 1 ) = P S I < 1 ) - X < I )

1 70  P S I <2 ) = P S I < 2 ) - X < 1 + 1 2 )
RETURN
END
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I N E Q U A L I T Y  C O N S T R A I N T  L I S T I N G  FOR P R O B L E M  #27

SUBROUTINE CONST<X*NPHI*PHI)
DIMENSION A ( 1 8 ) * U ( 1 8 ) * X ( 1 ) * P H I (1>
DATA < A < I ) * 1 = 1 * 1 8 ) / . 9 * . 8 * 1 . 1 * 1 * » . 7 * 1 * 1 * 1 . * 1 . * 1 . 1 *  

1 » 9 * . 8 * 1 . 2 *  . 9 * 1 . 2 * 1 . 2 * 1 .  * 1 « *  « 9 /
C 1ST T IE R  OF GASFIERS

DO 20  1 = 1 * 6  
K l = I + 2 4  
K 2 = I+ 4 2  
K 3 = I+ 1 2
A L P = X < K 1 ) # X ( K 1 > # A < I ) # 2 * # X < K 2 > /< 1 ♦ + X ( K 2 ) )#X<K 3)

2 0  U < I ) = X < I ) # X < I ) / < X < I ) + A L P )
C 2ND T IE R  OF GASFIERS

DO 4 0  1 = 7 * 1 2  
K l = I + 2 4  
K 2 = I+ 3 6  
K 3 = I+ 1 2
A L P = X ( K 1 ) # X < K 1 ) # A < I ) # 2 . * X < K 2 ) / < 1 . + X ( K 2 ) ) * X < K 3 >  
SUM=X < I ) + U ( I - 6 )

4 0  U ( I ) =SUM#SUM/< SUM+ALP)
C 1ST T IE R  OF METHANATORS

DO 60 1 = 1 3 * 1 5  
K 1 = 2 # < I - 1 0 ) + 1  
K 2 = I+ 2 4
ALP=X<K 2 >* X <K 2 ) * A <I )
SUM=U<K1)+U(K1+1)

6 0  U<I)=SUM*SUM/<SUM+ALP)
C 2ND T IE R  OF METHANATORS

DO 8 0  1 = 1 6 * 1 8  
K l = I + 2 4
A L P = X < K 1 )# X < K 1 ) *A < I>
SUM=U(1 - 3 )

8 0  U <I ) =SUM*SUM/( SUM+ALP)
R = U ( 1 6 ) + U ( 1 7 ) + U ( 1 8 )
P H I < 1 ) « 1 * 5 - R
RETURN
END
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(28). Flywheel optimization problem.

GENERAL INFORMATION:
5 Variables
3 Functional inequality constraints 

10 Variable bounds x^ i 10 j =1,2,3,4,5
X;. > -10 j =1,2,3 
*4 * -10 
x5 > 1.0

STARTING INFORMATION:
xQ = [-.3359769, -1.432398, 0, 4, 9]
f(XQ) = -1.631484
g.(x ) = 16.40753 
1 ° g_(x ) = 28.03172

g 2 <-o> - 1

SOLUTION:
x* = [.19852438, -3.01059794,-.0530266138, 

2.83165094, 10]
f(x*) = -5.55840576
Constraints #1, 2 and 3 are active.

COMMENTS: This problem involves the design of a flywheel
to produce the maximum kinetic energy for a given amount 
of material rotating at a specified speed. The flywheel 
is to fit on a one inch shaft and the design variables 
specify the flywheel contour. The flywheel contour is 
generated using Fourier coefficients to allow the flywheel 
to take any arbitrary shape with a limitation imposed by 
the small number of terms used. The constraints include 
a constraint on the maximum allowable stress in the flywheel 
which involves the solution of a second order nonlinear 
boundary value problem. The evaluation of this constraint
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(28). (cont'd)

alone required almost 3/4 second. The other constraints 
placed limits on the maximum thickness of the flywheel 
and the maximum value of the outer radius of the 
flywheel.
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F U N C T I O N  AND A U X I L I A R Y  S U B R O U T I N EFOR P R O B L E M  #28

FUNCTION F ( X )
DIMENSION X ( l ) r X C ( 1 0 0 ) * THICK d O O ) * DTHICK d O O )  
COMMON/B/ XMUt RHOrTHICK»W2rDTHICK t KKK 
COMMON/ST/ VALUE2
DATA XMU* ALPHAt U t EPSIrRHO t Y I t X I * 1 1 1KKK t E P S / ♦ 3 0 r 

1 1 0 0 0 « 0 r 6 2 8 »Or « 0 0 0 1 * 7 * 2 6 3 E - 4 * 0 * 0 * 1 * 0 * 9 9 * 9 8 * • 1 0 /  
W 2 « X < 6 )# 1 0 0 .0  
D R = X < 5 ) - X I  
X C d ) = X I  
DO 6 0  1 = 1 * KKK 

6 0  X C d + l )= X C d > + D R /F L O A T < K K K >
CALL THFN( XC rTHICK * DTHICK * XrKKK* X ( 1 1 ) * X I )
CALL ENERGY<XC*F>
F = - F / 1 . 0 E + 0 6
RETURN
END

SUBROUTINE ENERGY<X*XKE>
DIMENSION X ( 1 0 0 ) r T H IC K ( 1 0 0 ) rDTHICK <100)  
COMMON/B/ XMU * RHO * THICK * W* DTHICK r KKK 
C 0N ST=3 .1415927#RH 0#W #*2  
X K E=0.0  
DO 10 1 = 1 *KKK 

10 XKE»XKE+X(1  >* * 3 * T H I C K < I > * < X ( I + 1 ) - X < I > )  
XKE«XKE#CONST 
RETURN 
END
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SUBROUTINE CONST<CfN P H I fP H I )
DIMENSION Y 1 < 1 0 0 ) fY < 1 0 0 ) fX < 1 0 0 > fR S T < 1 0 0 > fT S T < 1 0 0 > fT H IC K < 1 0 0 >  
DIMENSION DTHICK< 100 > f STOT < 1 0 0 > f C < 1 0 > f P H I < 4 )
COMMON/B/ XMU f RHO f THICK f W2 f DTHICK f KKK 
C0MM0N/TFN1/ TMAX 
COMMON/ST/ VALUE2
DATA XMUfALPHAfWfE P S I fRHOfY I fX I f I I fKKKfE P 8 / . 3 0 f 

1 1 0 0 0 « 0 f6 2 8 » 0 f * 0 0 0 1 f7« 2 6 3 E - 4 f0 » 0 f 1 * 0 f9 9 f9 8 f »1 0 /
ISTRT=0  
W 2 = C < 6 > *1 0 0 .0  
D R » C ( 5 ) - X I  
X < 1 ) = X I  
DO 6 0  1 = 1 fKKK 

6 0  X<1 + 1 )« X < I )+ B R /K K K
CALL THFN( X f TH ICK fDTHICK fC fKKK fC ( 4 ) f X I )

5  Y l 1 = 1 0 0 0 0 0 ♦ 0 0  
2  CALL RUNKUT<Y1I f Y I fX I fC < 5 ) f I I fY fY 1 fX)

F X L = - Y U I >
X L « Y 1 I  
Y I» 0 »  0
Y l I = 2 5 0 3 0 0 0  * 00
CALL RUNKUT(Y1If Y I fX I fC ( 5 ) f I I f Y f Y 1 fX>
F X R « - Y < I I )
XR=Y1I
CALL FALSE(XL fXRfF X L fFXRfEPSfY fY 1 fX fX I fC < 5 ) fY I fR 00T f I I )
SMAX=0*0
VALUE2=0»0
DO 3 0 0  NN=1f I I
RST<NN)=Y<NN)/<THICK<NN>*X<NN> >
TST (NN) = < Y l  <NN)+THICK< N N ) * R H Q * U 2 * * 2 * X < N N ) * * 2 ) /T H IC K < N N )
STOT < NN > =SGRT < < RST< NN >-T S T  <NN>) * *2 + R S T  < NN) * * 2 + T S T ( NN) # * 2 )
IF< STOT(NN >.GT.SMAX) SMAX=STQT(NN)
VALUE2=VALUE2+( 3 0 0 0 0 . 0-STOT < NN) ) * * 2  

3 0 0  CONTINUE
VALUE2=SGRT < VALUE2)
I F <IS T R T »E G *2)  W R IT E (6 f3 1 0 )

3 1 0  F O R M A K I H I f # RADIAL STRESS*f 2 X f *TANGENTIAL STRESS*f2 X f 
1 *  EQUIVALENT STRESS*f I X f *  RADIUS * f4 X f *  THICKNESS*)

IF < IS T R T » E G * 2 )  WRITE( 6 f 3 2 0 ) ( R S T ( I ) f T S T ( I ) r S T O T ( I > f X ( I > t 
1 T H I C K < I ) f I = 1 f I I )

3 2 0  FORMAT<1H f5 F 1 5 .2 >
P H I < 1 ) » ( 3 0 0 0 0 . O-SMAX) / 1 0 0 0 . 0  
P H K 2 ) » 5 . 0 “ TMAX
CALL V 0LU M E(C <4)fCf V fTH IC K fKKKfX)
P H I ( 3 ) » < 6 2 5 » 0 - V > / 1 0 .

9 0 0  RETURN 
END



www.manaraa.com

A U X I L I A R Y  S U B R O U T I N E  FOR P R O B L E M  #28

SUBROUTINE RUNKUT< Y11r  Y I * X I r  X F »11r  Y »Y 1 » X )  
DIMENSION Y K I O O )  r Y ( lO O )  rX < 1 0 0 )
REAL M0»Ml*M2rM3
X < 1 )® X I
Y ( 1 ) = Y I
Y 1 < 1 ) » Y 1 I
H ® ( X F - X I ) / < I I - l )
KK=>II -1  
BO 10 J » l r K K  
LL=J  
XR®X(J)
YR=Y<J)
Y1R»Y1<J>
MO«H#YRUN( XR t YR r Y1R r L L )
XR=X( J ) + H / 2 ♦0 
Y R ® Y ( J ) + H * Y l < J > / 2 . 0  
Y1R®Y1 <J ) + M 0 / 2 * 0  
M1=H#YRUN<XR* Y R »Y lR rL L )
YR=YR+H#M0/4 .0
Y l R » Y l < J ) + M l / 2 . 0
M2=H*YRUN < XR r YR t Y1R »L L )
XR=X<J)+H
YR®Y< J>+H*Y1 ( J > + H * M l / 2 . 0
Y1R®Y1<J>+M2
M3«H*YRUN ( XR » YR r Y1R t LL )
Y < J + 1)»■Y ( J ) + H #Y1( J ) + H /6  * 0# < M0+M1+M2)
Y 1 < J + l > ®Y1< J > + < MO+2♦0 # M l + 2 . 0#M2+M3 > / 6 .0 

10 X < J + l ) ® X < J ) + H  
RETURN 
END
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SUBROUTINE FALSE < XL f XR fFXLrFXRrEPSfYfYIfXfXIf X F f Y I r R O O T f 11) 
DIMENSION Y1<100)fY<100)fX<100)

105 XAPP»XL+ < F X L * ( X R -X L ) / ( FXL-FXR ) )
CALL RUNKUT(XAPPfY I fX I fXFf I I fY f Y I fX)
F X A P P = -Y < I I>
IF (A B S ( (X A P P -X S A V E J /X A P P )*LE «E P S )  GO TO 25 0  
VALUE»FXAPP*FXL 
I F  < VALUE• L T »0)  GO TO 110  
XL=XAPP 
XSAVE=XL 
FXL«FXAPP 
GO TO 105  

110 XR»XAPP 
XSAVE«XR 
FXR«FXAPP 
GO TO 105  

25 0  ROOT«*XAPP 
RETURN 
END

FUNCTION YRUN( XR f YR r Y1R f I )
DIMENSION THICK<1 0 0 ) , DTHICK<100>
COMMON/B/ XMU f RHO f THICK f W2 fDTHICK f KKK
YRUN= < 1 . 0 /T H IC K  <I ) *DTHICK <I ) - 1 . 0 /X R  > *Y1R+ < 1 . 0 / <  X R * * 2 ) - X M U / ( XR *T H I  

* K < I ) )  3KDTHICK <I ) > * Y R - < 3 . O+XMU) #RH0#W 2**2#THICK( I > *XR  
RETURN 
END
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SUBROUTINE TH FN < X f THICK f DTHICK f C f KKK f CO f X I )
D IM EN SION  X < 1 0 0 ) f T H IC K ( 1 0 0 ) » D T H IC K ( 1 0 0 ) fC ( 1 0 )
C 0 M M 0 N /T F N 1 /  TMAX 
T H IC K < 1 ) » C 0  
XL=X < KKK +1) “ X < 1 )
NFSTss2
TMAX=THICK<1>
DO 1 0  I * 1 fKKK
T H I C K < I + 1 ) ® C 0 + C < 1 ) # < X < I + 1 > - X I )
DO 9  L M » 1 f NFST  
JKL=LM+1

9  T H I C K ( 1 + 1 ) ssT H IC K < 1 + 1 ) + C < J K L ) # S I N < ( 2 * 0 # J K L - 3 * 0 ) * 3 » 1 4 1 5 9 # ( X < I ) - X < 1 > )  
1 / X L )

I F ( T H IC K <I +1> * 6 T . TMAX> TM A X *TH IC K ( I + 1 )
1 0  D T H IC K < I ) *> ( TH IC K  ( I + 1 ) - T H I C K ( I ) ) / ( X ( I + 1 ) - X ( I > )

RETURN
END

SUBROUTINE VOLUME( CO f C » V t THICK »KKK f X )
DIMENSION X < 1 0 0 ) f T H I C K < 1 0 0 ) fC ( 1 0 )
V = 0 . 0
P I= < 3 .1 4 1 5 9
D E L T X * ( X ( KKK +1) - X  < 1 ) ) /KKK
LMN=KKK-1
DO 10  I » 1 f LMNf2
R 1 « < X < 1 + 1 ) + X < I ) ) / 2 » 0
R 2 » < X < I + 1 ) + X ( 1 + 2 )  ) / 2 «  0
R 3“ < R l + R 2 ) / 2 * 0

1 0  V * V + 2 . 0 * P I # D E L T X / 3 ♦ 0 * ( T H IC K <I ) * R i  + 4 , 0 * T H I C K ( 1 + 1 ) * R 3 + T H I C K ( 1 + 2 ) * R 2 ) 
RETURN 
END
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(29). Optimization of a multi-spindle automatic lathe [69]

GENERAL INFORMATION:
10 Variables 
1 Equality constraint 

14 Functional inequality constraints 
20 Variable bounds
0 < X1 < 10 .00005 < xg £ .0013
0 *2 £ .1 .00005 £ x? i .0027

00005 < *3 £ .0081 .00005 < x8 i .002
10 < x4 < 1000 .00005 < Xg ^ 1

00005 s *5 < .0017 .00005 < x10 * 1

STARTING INFORMATION:

x - o [10, .005, .0081, 100, 
.15, .105]

.0017, .0013, .0027, .(

f (*Q) 2931.46961755

hl (*o = -1.77636 x 10"15 V V = 49.99566

gl'*o = 9.074074 g9 (xo) = 49.99584

g2 (*o = 9.117647 g10(xo) = 49.97842

g3<*o 9.092308 gll(xo) = 49.97748

g4 (Xo =s 9.196296 g12 = 49.98758

g5 <Xo = 9.375000 g13(*o) = 49.98960

g6 (*o = 49.99737 = 25.19410

g7 (*o ss 49.99737

r
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(29) . (cont'd)

SOLUTION:
x* = 1.209162445, .000614223, .0081, 442.684799, .0017, 

.0013, .0027, .001457317, .155236846, .0997631534]
f(x*) = -1614.9381624
Constraints #1, 9, and 12 are active.

COMMENTS: This problem concerns maximizing the profit
rate for producing a component on an automatic spindle 
lathe.
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F U N C T I O N  A N D  C O N S T R A I N T  LIS T IN G S  FOR P R O B L E M  #29

FUNCTION F ( X )
DIMENSION X ( l )
F = 2 0 . 0 E + 0 3

1 *  < 1 5 . O E -2 * X  < 1 )+ 1 4  4 0E +0*X  < 2 ) - 6 0 0 0 . O E -5 )
2  / <  2 * 0 E - 3 + X ( 1 ) + 6 0 • 0 E + 0 * X ( 2 ) )

RETURN
END

SUBROUTINE EQ U A L<XrPS IrN PS I>
DIMENSION X ( 1 > f P S I ( 1 )
P S I < l ) * X < 9 ) + X < 1 0 > - 2 5 5 . 0 E - 3
RETURN
END

SUBROUTINE CONST(X t N P H I t P H I )
DIMENSION X< 1 ) r P H I ( 1 )
P H I < l > * X ( l ) - 7 5 4 0 E - 2 / X ( 3 ) / X ( 4 )
P H I  < 2 ) S=X< 1 ) - X < 9  > / X ( 5 ) / X < 4  )
P H I < 3 ) ® X ( 1 ) ” X < 1 0 ) / X < 6 > / X ( 4 ) - 1 0 »  OE+O/X < 4 )
P H I < 4 > » X < l > - 1 9 . 0 E - 2 / X < 7 > / X < 4 > - 1 0 » O E + 0 / X ( 4 >
P H I ( 5 ) e X ( l ) - 1 2 5 . 0 E - 3 / X < 8 ) / X ( 4 )
P H I< 6 )« 1 » O E + 4 * X < 2 > ” 1 3 1 * O E - 5 * X < 9 > * X < 5 ) * * 6 6 6 » O E ” 3 * X < 4 > * * 1 5 , O E ” 1 
P H I < 7 ) - l • 0 E + 4 * X ( 2  >” 1 0 3 8 . 0 E - 6 * X ( 1 0 ) * X ( 6 > * * 1 6 0 ♦ 0 E - 2 * X  < 4 ) * * 3 . OE+O 
P H I < 8 ) ® 1 . 0 E + 4 *X  < 2 ) - 2 2 3 . 0 E - 6 * X  < 7 ) * * 6 6 6 ♦ 0 E - 3 * X  <4 > * * 1 5 ♦ OE-1  
P H I < 9 ) « 1 ♦0 E + 4 * X ( 2 ) - 7 6 , 0 E - 6 * X  < 8 ) * * 3 5 5 ♦ 0 E - 2 * X ( 4 ) * * 5 6 6 . OE-2  
P H I <1 0 ) = 1 ♦0 E + 4 * X ( 2 ) - 6 9 8 . 0 E - 6 * X  < 3 ) * * 1 2 0 » 0 E - 2 * X  < 4 ) * * 2 ♦ OE+O 
P H I < 1 1 ) = 1 ♦ 0 E + 4 * X < 2 > - 5 0 . 0 E - 6 * X < 3 ) * * 1 6 0 ♦ 0 E ~ 2 *X  < 4 ) * * 3 • OE+O 
P H I < 1 2 ) = 1 . 0 E + 4 * X ( 2 ) - 6 5 4 . 0 E -8 # X  < 3 ) * * 2 4 2 . 0 E - 2 * X  < 4 ) * * 4 1 7 . OE-2  
P H I < 1 3 ) = 1 . 0 E + 4 * X < 2 > - 2 5 7 . 0 E - 6 * X  < 3 ) * * 6 6 6 . 0 E - 3 * X (4  > * * 1 5  * OE-1  
P H I < 1 4 ) - 3 0  * 0 E + 0 - 2 0 0 3 ♦0 E - 3 * X  < 5 ) * X ( 4 ) - 1 8 8 5  * 0 E - 3 * X  < 6 ) *X  < 4 )

1 - 1 8 4  * 0 E - 3 * X  < 8 ) * X < 4 ) - 2 *  0 E +0 *X  < 3 ) * * 8 0 3 • 0 E - 3 # X ( 4 )
RETURN
END
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(30). Waste water treatment problem.

GENERAL INFORMATION:
19 Variables 
11 Equality constraints 
1 Functional inequality constraint 
38 Variable bounds x^ > .00001 j=l,2, ...,19
Xj < 50 j =1,2,16,17; x.. < 100 j=3,4,5,6
Xj < 1.0 x 105 j =7,8,9,10,11,18,19?
X;. < 1 j = 12,13,14,15?

STARTING INFORMATION:
X = [2, 4, 100, 50, 5, 20, 20, 3000, 3000, 2000, 7000,
° .001, .3, .5, .001, 5, 1, 9000, .5]
f<*,> = 61.9274433203

9l <*o = .2000000000 h6<*o> =-75.42857143

V * o *» +11.8622220 h7 (xo) +42.5281479

V * o = +5.05888904 h8 (*o> =-3211.294074

h3 (*o =-43.52963014 h9 <*o> = +1729.00000
h. (x 4 o = +1641.76482 h10 (5o> =-6.18698064

V * o = +42.8571428 hll <*o> =+.104000000

SOLUTION: (Vicinity)
x* = [.004473667, 3.441565,99.34824, 89.130035, 

15.279316, 15.279316,94.726127, 12304.197, 
12313.263, 12313.263,95905.631, .00001,.00001, 
.9999890, .00001, .00001, .1622235, 8305.1515, .0014797356]
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f(x*) = 24.4724654 
Constraint #1 is active.

COMMENTS: This problem involves the design of a waste
water treatment plant for minimum cost. A complete 
description of the problem is given by Himmelblau [70].
The problem contains many local minima, the one listed 
here is the best one found from the reported starting point.
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FUNCTION F ( X )
DIMENSION X ( l >
Z I 1 = 2 5 . 0 # ( 2 2 6 8 . 0 * X  < 1 6 ) * X  < 1 ) ) * * 0 . 8 2 7  
2 1 2 = 1 . 7 5 E + 0 5 * X ( 1 7 ) + 3 . 6 5 E +0 4 *X  <17 > * * . 1 8 2  
2 1 3 = 1 2 . 4 * X < 1 8 ) + 5 . 3 5 * 1 0 . * * 3  * 3 7 8 / X ( 1 8 ) * * . 1 2 6  
F = 1 ♦ 4 * ( Z I 1 + Z I 2 + Z I 3 + 1 * 0 9 5 E + 0 4 + l «1 5 E + 0 3 * ( X < 1 ) * ( X ( 1 3 ) - X ( 1 4 ) )  

1 + X ( 2 ) * ( 1 » 0 + X ( 1 2 ) ) - 3 # 0 * < 1 * 0 - X ( 1 9 ) ) ) )
F = F / 1 . 0 E + 0 4  
DO 33  1 = 1 t 11 
F = F + 1 ♦ 0 E + 0 3 # X ( 1 9 + I )

3 3  CONTINUE 
RETURN 
END

SUBROUTINE C O N S T (X rN P H IrP H I) 
DIMENSION X ( 1 ) v P H I (1>  
COMMON/ANS/ N F rN I rN E  
N I= N I + 1
P H I ( 1 ) = 1 * 0 - X < 1 3 ) - * X ( 1 4 )
RETURN
END
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SUBROUTINE E Q U A L (X rP S IrN P S I>
DIMENSION X ( l ) f P S K l l )
AK=. 0 2 5 9 * 2 5 ♦ 0 / 2 0 . 0 * * ♦ 6 5 6  
X Z 4 » X ( 3 ) * E X P ( - A K * X ( 1 6 )>
Z J 1 ~ - ( X ( 1 ) * X ( 1 3 ) * X Z 4 + 3 0 0 » 0 * X ( 1 9 ) )
P S I  <1 ) aZ J l - fX (  1 ) * X ( 3 ) - X ( 2 ) * X ( 5 ) * X (  1 2 )
YZ4sbX ( 7 ) + ♦ 5 0 *  ( X < 3 )  - X Z 4  )
Z J 2 “ - X < 1 3 ) * X < 1 >*YZ4
P S I  (2)=>ZJ2+X( 1 ) * X ( 7 ) - X ( 2 ) * X ( 9 ) # X ( 1 2 )
Z J 3 - - 3 0 0 » 0 * ( 1 • 0 - X ( 1 9 ) > + 3 * 0 * X ( 6 ) * ( 1 # 0 - X ( 1 9 ) ) - X ( 1 ) * X ( 1 4 ) * X Z 4  
P S I  ( 3 ) asZ J 3 + X < 2 ) * ( X ( 4 ) ~ X ( 6 )  )+ X (  1 ) * X < 6 ) * X < 14 )
Z J 4 = 3 ♦0 * X  < 1 1 > * ( 1 *  0 - X ( 1 9 ) ) + X ( 1 ) * X ( 1 4 ) * ( X < 1 1 > - Y Z 4  >
P S I  ( 4 ) s=Z J 4 - f X ( 2 ) * ( X ( 8 ) - X (  1 1 )  > 
Z J 5 « X ( 1 7 ) * ( . 4 8 * X ( 5 ) * X ( 9 ) / ( 1 0 0 . 0 + X ( 5 ) ) )
PS I  ( 5 ) J= - 2 * 0 * Z J 5 + X ( 2 ) # ( X ( 4 ) - X ( 5 )  )
P S I < 6 ) ® Z J 5 + X ( 2 ) * ( X < 8 ) - X < 9 ) ) - * 0 4 8 * X ( 9 ) * X ( 1 7 )
ZK7=X( 1 ) * (  1 * 0 - X (  1 3 ) - X ( 1 4 > )
Q Z 1 2 - X ( 1 ) * ( 1 . 0 - X ( 1 3 ) - X ( 1 4 ) ) + X ( 2 ) * ( 1 « 0 - X ( 1 2 ) )
PS I  < 7 )  *S-Z K 7 *X Z 4 + X  < 6 ) * Q Z 1 2 -X  ( 2  > * X ( 5  > * ( 1  *0 - X  ( 1 2 ) )
ZJ8«X < 1 0 ) * 0 Z 1 2 -Z K 7 * Y Z 4
P S I ( 8 ) - Z J 8 - X ( 2 ) * X ( 9 ) * ( 1 * 0 - X ( 1 2 ) )
P S I ( 9 ) a 6 * 0 * ( l » 0 - X ( 1 5 ) ) *  < 2 0 * 0 - X ( 6 ) ) + X ( l l ) * ( X ( 2 ) - 3 » 0 * ( l ♦ 0 - X ( 15)  

1 ) - X ( l ) * X ( 1 4 ) ) + 3 * 0 * X ( 1 9 ) * X ( 1 1 ) - X ( 1 0 ) * 0 Z 1 2  
CK*=7. 4 * 2  ♦ 0 * 1 .  2 * * 4 / 2  * 31E+04  
T E S T » -C K * X (1 8 ) /Q Z 1 2
I F ( T E S T * G T * 9 9 )  Z J 1 0 = - 2 .1 * S G R T ( A B S ( X ( 1 0 ) > > * E X P ( 9 9 . 0 )
I F ( TEST * LT * 9 9 )  Z J 1 0 « - 2 . 1 * S Q R T ( A B S ( X ( 1 0 > ) ) * E X P ( - C K * X ( 1 8 ) / 0 Z 1 2 >  
P S I ( 1 0 ) “ Z J 1 0 + 2 * 0 * ( 2 0 » 0 - X ( 6 ) )
P S I ( 1 1 ) “ ( 1 ♦ 0 - X ( 1 3 ) ) * X ( 1 ) ~ X ( 1 2 ) * X ( 2 ) - 3 ♦ 0 # X ( 1 9 )
RETURN
END
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Appendix C 
Intermediate Data

1 2 3 4 5 6 7
TIHt (SEC)

Figure C.l Total Relative Error versus Time for Problem
Number 1.
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Figure C.2 Total Relative Error versus Time for ProblemProblem Number 2.
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Figure C.2, (Cont'd)
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Figure C.3 Total Relative Error versus Time for ProblemNumber 3.
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Figure C.4 Total Relative Error versus Time for Problem
Number 4.
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Figure C.5 Total Relative Error versus Time for Problem
Number 5.
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Figure C.6 Total Relative Error versus Time for Problem
Number 6.
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Figure C.7 Total Relative Error versus Time for ProblemNumber 7.
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Figure C.8 Total Relative Error versus Time for Problem
Number 8.
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Figure C.9 Total Relative Error versus Time for Problem
Number 10.
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Figure C.9, (Cont'd)
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Figure C.10 Total Relative Error versus Time for ProblemNumber 11.
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Figure C.ll Total Relative Error versus Time for Problem
Number 12.
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Figure C.12 Total Relative Error versus Time for Problem
Number 14.



www.manaraa.com

TO
TA
L 

RE
LA
TI
VE
 

ER
RO
R

299

.+0

'v

10

200
TIKE (SEC)

Figure C.12, {Cont'd)



www.manaraa.com

TO
TA
t,
 R

El
.A
TI
VK
 
ER
RO
R

300

1C*

+01C

210

10

■A10"

710

10 20 30 40 6050

TIKE (SEC)

Figure C.13 Total Relative Error versus Time for Problem
Number 15.
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Figure C.14 Total Relative Error versus Time for Problem
Number 16.
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Figure C.15 Total Relative Error versus Time for Problem
Number 17.
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Figure C.16 Total Relative Error versus Time for ProblemNumber 18.
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Figure C.17 Total Relative Error versus Time for Problem
Number 19.
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Figure C.18 Total Relative Error versus Time for ProblemNumber 20.
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0.19 Total Relative Error versus Time for Problem
Number 23.
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Figure C.21 Total Relative Error versus Time for Problem
Number 25.
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Figure C.22 Total Relative Error versus Time for Problem
Number 26.
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